Vinberg, Ernest B. and Yakimova, Oksana S. (2019). Complete families of commuting functions for coisotropic Hamiltonian actions. Adv. Math., 348. S. 523 - 541. SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE. ISSN 1090-2082
Full text not available from this repository.Abstract
Let G be an algebraic group defined over a field F of characteristic zero with g = Lie G. The dual space g* equipped with the Lie Poisson bracket is a Poisson variety and each irreducible G-invariant subvariety X subset of g* carries the induced Poisson structure. We prove that there is a set {f(1),..., f(1)} subset of F [X] of algebraically independent polynomial functions, which pairwise commute with respect to the Poisson bracket, such that l = (dim X + tr.degF(X)(G))/2. We also discuss several applications of this result to complete integrability of Hamiltonian systems on symplectic Hamiltonian G-varieties of corank zero and 2. (C) 2019 Elsevier Inc. All rights reserved.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-147848 | ||||||||||||
DOI: | 10.1016/j.aim.2019.03.024 | ||||||||||||
Journal or Publication Title: | Adv. Math. | ||||||||||||
Volume: | 348 | ||||||||||||
Page Range: | S. 523 - 541 | ||||||||||||
Date: | 2019 | ||||||||||||
Publisher: | ACADEMIC PRESS INC ELSEVIER SCIENCE | ||||||||||||
Place of Publication: | SAN DIEGO | ||||||||||||
ISSN: | 1090-2082 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/14784 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |