Schneider, Anna C., Seichter, Henriette A., Neupert, Susanne, Hochhaus, A. Maren and Smarandache-Wellmann, Carmen R. (2018). Profiling neurotransmitters in a crustacean neural circuit for locomotion. PLoS One, 13 (5). SAN FRANCISCO: PUBLIC LIBRARY SCIENCE. ISSN 1932-6203

Full text not available from this repository.

Abstract

Locomotor systems are widely used to study rhythmically active neural networks. These networks have to be coordinated in order to produce meaningful behavior. The crayfish swimmeret system is well suited to investigate such coordination of distributed neural oscillators because the neurons and their connectivity for generating and especially for coordinating the motor output are identified. The system maintains a fixed phase lag between the segmental oscillators, independent of cycle period. To further the understanding of the system's plasticity for keeping the phase lag fixed, we profiled the neurotransmitters used by the Coordinating Neurons, which are necessary and sufficient for coordination of the segmental oscillators. We used a combination of electrophysiological, immunohistochemical, and mass spectrometric methods. This arrangement of methods ensured that we could screen for several specific neurotransmitters, since a single method is often not suitable for all neurotransmitters of interest. In a first step, to preselect neurotransmitter candidates, we investigated the effect of substances known to be present in some swimmeret system neurons on the motor output and coordination. Subsequently, we demonstrated electrophysiologically that the identified synapse between the Coordinating Neurons and their target is mainly chemical, but neither glutamate antagonist nor Y-aminobutyric acid antagonist application affected this synapse. With immunohistochemical experiments, we provide strong evidence that the Coordinating Neurons are not serotonergic. Single-cell MALDI-TOF mass spectrometry with subsequent principal component analysis identified acetylcholine as the putative neurotransmitter for both types of Coordinating Neurons.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Schneider, Anna C.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Seichter, Henriette A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Neupert, SusanneUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hochhaus, A. MarenUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Smarandache-Wellmann, Carmen R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-186034
DOI: 10.1371/Journal.pone.0197781
Journal or Publication Title: PLoS One
Volume: 13
Number: 5
Date: 2018
Publisher: PUBLIC LIBRARY SCIENCE
Place of Publication: SAN FRANCISCO
ISSN: 1932-6203
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
TERMINAL ABDOMINAL-GANGLION; PATTERN-GENERATING CIRCUITS; GAMMA-AMINOBUTYRIC-ACID; LOBSTER NERVOUS-SYSTEM; SWIMMERET SYSTEM; STOMATOGASTRIC SYSTEM; PROCAMBARUS-CLARKII; LIMB MOVEMENTS; MOTOR-NEURONS; COORDINATING INTERNEURONSMultiple languages
Multidisciplinary SciencesMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/18603

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item