Harutyunyan, A. V. and Marinescu, G. (2018). Hankel and Berezin Type Operators on Weighted Besov Spaces of Holomorphic Functions on Polydisks. J. Contemp. Math. Anal.-Armen. Aca., 53 (2). S. 77 - 88. NEW YORK: ALLERTON PRESS INC. ISSN 1934-9416

Full text not available from this repository.

Abstract

Let S be the space of functions of regular variation and let omega = (omega (1),..., omega (n)), omega (j) a S. The weighted Besov space of holomorphic functions on polydisks, denoted by B (p) (omega) (0 < p < +a), is defined to be the class of all holomorphic functions f defined on the polydisk U (n) such that , where dm (2n)(z) is the 2ndimensional Lebesgue measure on U (n) and D stands for a special fractional derivative of f.We prove some theorems concerning boundedness of the generalized little Hankel and Berezin type operators on the spaces B (p) (omega) and L (p) (omega) (the weighted L (p) -space).

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Harutyunyan, A. V.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Marinescu, G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-193985
DOI: 10.3103/S1068362318020036
Journal or Publication Title: J. Contemp. Math. Anal.-Armen. Aca.
Volume: 53
Number: 2
Page Range: S. 77 - 88
Date: 2018
Publisher: ALLERTON PRESS INC
Place of Publication: NEW YORK
ISSN: 1934-9416
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
BERGMAN SPACESMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/19398

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item