Heinlein, Alexander ORCID: 0000-0003-1578-8104, Klawonn, Axel ORCID: 0000-0003-4765-7387, Lanser, Martin and Weber, Janine (2020). Combining Machine Learning and Domain Decomposition Methods – A Review. Technical Report.
|
PDF
CDS_TR-2020-9.pdf Download (1MB) | Preview |
Abstract
Scientific machine learning, an area of research where techniques from machine learning and scientific computing are combined, has become of increasing importance and receives growing attention. Here, our focus is on a very specific area within scientific machine learning given by the combination of domain decomposition methods with machine learning techniques. The aim of the present work is to make an attempt of providing a review of existing and also new approaches within this field as well as to present some known results in a unified framework; no claim of completeness is made. As a concrete example of machine learning enhanced domain decomposition methods, an approach is presented which uses neural networks to reduce the computational effort in adaptive domain decomposition methods while retaining their robustness. More precisely, deep neural networks are used to predict the geometric location of constraints which are needed to define a robust coarse space. Additionally, two recently published deep domain decomposition approaches are presented in a unified framework. Both approaches use physics-constrained neural networks to replace the discretization and solution of the subdomain problems of a given decomposition of the computational domain. Finally, a brief overview is given of several further approaches which combine machine learning with ideas from domain decomposition methods to either increase the performance of already existing algorithms or to create completely new methods.
Item Type: | Preprints, Working Papers or Reports (Technical Report) | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-207089 | ||||||||||||||||||||
Series Name at the University of Cologne: | Technical report series. Center for Data and Simulation Science | ||||||||||||||||||||
Volume: | 2020,9 | ||||||||||||||||||||
Date: | 19 October 2020 | ||||||||||||||||||||
Language: | English | ||||||||||||||||||||
Faculty: | Central Institutions / Interdisciplinary Research Centers | ||||||||||||||||||||
Divisions: | Weitere Institute, Arbeits- und Forschungsgruppen > Center for Data and Simulation Science (CDS) | ||||||||||||||||||||
Subjects: | Natural sciences and mathematics Mathematics Technology (Applied sciences) |
||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||
Refereed: | No | ||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/20708 |
Downloads
Downloads per month over past year
Export
Actions (login required)
View Item |