Loebrich, Steffen (2017). Linear incongruences for generalized eta-quotients. Res. Number Theory, 3. HEIDELBERG: SPRINGER HEIDELBERG. ISSN 2363-9555

Full text not available from this repository.

Abstract

For a given generalized eta-quotient, we show that linear progressions whose residues fulfill certain quadratic equations do not give rise to a linear congruence modulo any prime. This recovers known results for classical eta-quotients, especially the partition function, but also yields linear incongruences for more general weakly holomorphic modular forms like the Rogers-Ramanujan functions.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Loebrich, SteffenUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-221846
DOI: 10.1007/s40993-017-0082-x
Journal or Publication Title: Res. Number Theory
Volume: 3
Date: 2017
Publisher: SPRINGER HEIDELBERG
Place of Publication: HEIDELBERG
ISSN: 2363-9555
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
HOLOMORPHIC MODULAR-FORMS; PARTITION-FUNCTION; RAMANUJANMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/22184

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item