Loebrich, Steffen (2017). Linear incongruences for generalized eta-quotients. Res. Number Theory, 3. HEIDELBERG: SPRINGER HEIDELBERG. ISSN 2363-9555
Full text not available from this repository.Abstract
For a given generalized eta-quotient, we show that linear progressions whose residues fulfill certain quadratic equations do not give rise to a linear congruence modulo any prime. This recovers known results for classical eta-quotients, especially the partition function, but also yields linear incongruences for more general weakly holomorphic modular forms like the Rogers-Ramanujan functions.
Item Type: | Journal Article | ||||||||
Creators: |
|
||||||||
URN: | urn:nbn:de:hbz:38-221846 | ||||||||
DOI: | 10.1007/s40993-017-0082-x | ||||||||
Journal or Publication Title: | Res. Number Theory | ||||||||
Volume: | 3 | ||||||||
Date: | 2017 | ||||||||
Publisher: | SPRINGER HEIDELBERG | ||||||||
Place of Publication: | HEIDELBERG | ||||||||
ISSN: | 2363-9555 | ||||||||
Language: | English | ||||||||
Faculty: | Unspecified | ||||||||
Divisions: | Unspecified | ||||||||
Subjects: | no entry | ||||||||
Uncontrolled Keywords: |
|
||||||||
Refereed: | Yes | ||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/22184 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |