Burban, Igor and Drozd, Yuriy ORCID: 0000-0002-4766-8791 (2017). Generalities on maximal Cohen-Macaulay modules. Mem. Am. Math. Soc., 248 (1178). S. 1 - 116. PROVIDENCE: AMER MATHEMATICAL SOC. ISSN 1947-6221
Full text not available from this repository.Abstract
In this article we develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, we give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, we prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. Our approach is illustrated on the case of k[x, y, z]/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singularities leads to a new class of problems of linear algebra, which we call representations of decorated bunches of chains. We prove that these matrix problems have tame representation type and describe the underlying canonical forms.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-226720 | ||||||||||||
DOI: | 10.1090/memo/1178 | ||||||||||||
Journal or Publication Title: | Mem. Am. Math. Soc. | ||||||||||||
Volume: | 248 | ||||||||||||
Number: | 1178 | ||||||||||||
Page Range: | S. 1 - 116 | ||||||||||||
Date: | 2017 | ||||||||||||
Publisher: | AMER MATHEMATICAL SOC | ||||||||||||
Place of Publication: | PROVIDENCE | ||||||||||||
ISSN: | 1947-6221 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/22672 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |