Feigin, Evgeny, Fourier, Ghislain and Littelmann, Peter (2017). FAVOURABLE MODULES: FILTRATIONS, POLYTOPES, NEWTON-OKOUNKOV BODIES AND FLAT DEGENERATIONS. Transform. Groups, 22 (2). S. 321 - 353. NEW YORK: SPRINGER BIRKHAUSER. ISSN 1531-586X
Full text not available from this repository.Abstract
We introduce the notion of a favourable module for a complex unipotent algebraic group, whose properties are governed by the combinatorics of an associated polytope. We describe two filtrations of the module, one given by the total degree on the PBW basis of the corresponding Lie algebra, the other by fixing a homogeneous monomial order on the PBW basis. In the favourable case a basis of the module is parametrized by the lattice points of a normal polytope. The filtrations induce at degenerations of the corresponding ag variety to its abelianized version and to a toric variety, the special fibres of the degenerations being projectively normal and arithmetically Cohen-Macaulay. The polytope itself can be recovered as a Newton-Okounkov body. We conclude the paper by giving classes of examples for favourable modules.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-230404 | ||||||||||||||||
DOI: | 10.1007/s00031-016-9389-2 | ||||||||||||||||
Journal or Publication Title: | Transform. Groups | ||||||||||||||||
Volume: | 22 | ||||||||||||||||
Number: | 2 | ||||||||||||||||
Page Range: | S. 321 - 353 | ||||||||||||||||
Date: | 2017 | ||||||||||||||||
Publisher: | SPRINGER BIRKHAUSER | ||||||||||||||||
Place of Publication: | NEW YORK | ||||||||||||||||
ISSN: | 1531-586X | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
Refereed: | Yes | ||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/23040 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |