Hsiao, Chin-Yu and Marinescu, George ORCID: 0000-0001-6539-7860 (2017). Berezin-Toeplitz quantization for lower energy forms. Commun. Partial Differ. Equ., 42 (6). S. 895 - 943. PHILADELPHIA: TAYLOR & FRANCIS INC. ISSN 1532-4133
Full text not available from this repository.Abstract
Let M be an arbitrary complex manifold and let L be a Hermitian holomorphic line bundle over M. We introduce the Berezin-Toeplitz quantization of the open set of M where the curvature on L is nondegenerate. In particular, we quantize any manifold admitting a positive line bundle. The quantum spaces are the spectral spaces corresponding to [0,k(-N)], where N>1 is fixed, of the Kodaira Laplace operator acting on forms with values in tensor powers L-k. We establish the asymptotic expansion of associated Toeplitz operators and their composition in the semiclassical limit k and we define the corresponding star-product. If the Kodaira Laplace operator has a certain spectral gap this method yields quantization by means of harmonic forms. As applications, we obtain the Berezin-Toeplitz quantization for semi-positive and big line bundles.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-245825 | ||||||||||||
DOI: | 10.1080/03605302.2017.1330340 | ||||||||||||
Journal or Publication Title: | Commun. Partial Differ. Equ. | ||||||||||||
Volume: | 42 | ||||||||||||
Number: | 6 | ||||||||||||
Page Range: | S. 895 - 943 | ||||||||||||
Date: | 2017 | ||||||||||||
Publisher: | TAYLOR & FRANCIS INC | ||||||||||||
Place of Publication: | PHILADELPHIA | ||||||||||||
ISSN: | 1532-4133 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/24582 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |