Faigle, Ulrich and Grabisch, Michel (2016). Bases and linear transforms of TU-games and cooperation systems. Int. J. Game Theory, 45 (4). S. 875 - 893. HEIDELBERG: SPRINGER HEIDELBERG. ISSN 1432-1270
Full text not available from this repository.Abstract
We study linear properties of TU-games, revisiting well-known issues like interaction transforms, the inverse Shapley value problem and potentials. We embed TU-games into the model of cooperation systems and influence patterns, which allows us to introduce linear operators on games in a natural way. We focus on transforms, which are linear invertible maps, relate them to bases and investigate many examples (Mobius transform, interaction transform, Walsh transform and Fourier analysis etc.). In particular, we present a simple solution to the inverse problem in its general form: Given a linear value and a game v, find all games such that . Generalizing Hart and Mas-Colell's concept of a potential, we introduce general potentials and show that every linear value is induced by an appropriate potential.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-256616 | ||||||||||||
DOI: | 10.1007/s00182-015-0490-x | ||||||||||||
Journal or Publication Title: | Int. J. Game Theory | ||||||||||||
Volume: | 45 | ||||||||||||
Number: | 4 | ||||||||||||
Page Range: | S. 875 - 893 | ||||||||||||
Date: | 2016 | ||||||||||||
Publisher: | SPRINGER HEIDELBERG | ||||||||||||
Place of Publication: | HEIDELBERG | ||||||||||||
ISSN: | 1432-1270 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/25661 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |