Wang, Huan ORCID: 0000-0001-8985-4683 (2016). On the growth of von Neumann dimension of harmonic spaces of semipositive line bundles over covering manifolds. Int. J. Math., 27 (11). SINGAPORE: WORLD SCIENTIFIC PUBL CO PTE LTD. ISSN 1793-6519

Full text not available from this repository.

Abstract

We study the harmonic space of line bundle valued forms over a covering manifold with a discrete group action, and obtain an asymptotic estimate for the von Neumann dimension of the space of harmonic (n, q)-forms with values in high tensor powers of a semipositive line bundle. In particular, we estimate the von Neumann dimension of the corresponding reduced L-2- Dolbeault cohomology group. The main tool is a local estimate of the pointwise norm of harmonic forms with values in semipositive line bundles over Hermitian manifolds.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Wang, HuanUNSPECIFIEDorcid.org/0000-0001-8985-4683UNSPECIFIED
URN: urn:nbn:de:hbz:38-259216
DOI: 10.1142/S0129167X16500932
Journal or Publication Title: Int. J. Math.
Volume: 27
Number: 11
Date: 2016
Publisher: WORLD SCIENTIFIC PUBL CO PTE LTD
Place of Publication: SINGAPORE
ISSN: 1793-6519
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
MORSE INEQUALITIES; L-2Multiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/25921

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item