Wilke, Thomas ORCID: 0000-0001-8263-7758, Wagner, Bernd ORCID: 0000-0002-1369-7893, Van Bocxlaer, Bert ORCID: 0000-0003-2033-326X, Albrecht, Christian, Ariztegui, Daniel, Delicado, Diana, Francke, Alexander ORCID: 0000-0002-0370-5802, Harzhauser, Mathias, Hauffe, Torsten, Holtvoeth, Jens ORCID: 0000-0002-9259-4728, Just, Janna ORCID: 0000-0002-5257-604X, Leng, Melanie J., Levkov, Zlatko, Penkman, Kirsty, Sadori, Laura ORCID: 0000-0002-2774-6705, Skinner, Alister, Stelbrink, Bjorn ORCID: 0000-0002-7471-4992, Vogel, Hendrik ORCID: 0000-0002-9902-8120, Wesselingh, Frank ORCID: 0000-0003-3655-0701 and Wonik, Thomas (2016). Scientific drilling projects in ancient lakes: Integrating geological and biological histories. Glob. Planet. Change, 143. S. 118 - 152. AMSTERDAM: ELSEVIER. ISSN 1872-6364

Full text not available from this repository.

Abstract

Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep-drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment-core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling projects and the analytical approaches that can be applied to empirically and statistically link diverse datasets to create an integrative perspective on geological and biological data. In doing so, we highlight strengths and potential weaknesses of new methods and analyses, and provide recommendations for future interdisciplinary deep-drilling projects. (C) 2016 Elsevier B.V. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Wilke, ThomasUNSPECIFIEDorcid.org/0000-0001-8263-7758UNSPECIFIED
Wagner, BerndUNSPECIFIEDorcid.org/0000-0002-1369-7893UNSPECIFIED
Van Bocxlaer, BertUNSPECIFIEDorcid.org/0000-0003-2033-326XUNSPECIFIED
Albrecht, ChristianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ariztegui, DanielUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Delicado, DianaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Francke, AlexanderUNSPECIFIEDorcid.org/0000-0002-0370-5802UNSPECIFIED
Harzhauser, MathiasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hauffe, TorstenUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Holtvoeth, JensUNSPECIFIEDorcid.org/0000-0002-9259-4728UNSPECIFIED
Just, JannaUNSPECIFIEDorcid.org/0000-0002-5257-604XUNSPECIFIED
Leng, Melanie J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Levkov, ZlatkoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Penkman, KirstyUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sadori, LauraUNSPECIFIEDorcid.org/0000-0002-2774-6705UNSPECIFIED
Skinner, AlisterUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Stelbrink, BjornUNSPECIFIEDorcid.org/0000-0002-7471-4992UNSPECIFIED
Vogel, HendrikUNSPECIFIEDorcid.org/0000-0002-9902-8120UNSPECIFIED
Wesselingh, FrankUNSPECIFIEDorcid.org/0000-0003-3655-0701UNSPECIFIED
Wonik, ThomasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-268847
DOI: 10.1016/j.gloplacha.2016.05.005
Journal or Publication Title: Glob. Planet. Change
Volume: 143
Page Range: S. 118 - 152
Date: 2016
Publisher: ELSEVIER
Place of Publication: AMSTERDAM
ISSN: 1872-6364
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
HYDROGEN ISOTOPE RATIOS; AMINO-ACID RACEMIZATION; DIALKYL GLYCEROL TETRAETHERS; GLACIAL-INTERGLACIAL CYCLE; HIGH-RESOLUTION POLLEN; FRESH-WATER; MOLECULAR-CLOCK; ENVIRONMENTAL-CHANGES; ADAPTIVE RADIATION; BONNEVILLE BASINMultiple languages
Geography, Physical; Geosciences, MultidisciplinaryMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/26884

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item