Tollot, Marie, Assmann, Daniela, Becker, Christian, Altmueller, Janine, Dutheil, Julien Y., Wegner, Carl-Eric ORCID: 0000-0002-4339-6602 and Kahmann, Regine (2016). The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. PLoS Pathog., 12 (6). SAN FRANCISCO: PUBLIC LIBRARY SCIENCE. ISSN 1553-7374

Full text not available from this repository.

Abstract

The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 late effectors was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Tollot, MarieUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Assmann, DanielaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Becker, ChristianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Altmueller, JanineUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Dutheil, Julien Y.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wegner, Carl-EricUNSPECIFIEDorcid.org/0000-0002-4339-6602UNSPECIFIED
Kahmann, RegineUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-273192
DOI: 10.1371/journal.ppat.1005697
Journal or Publication Title: PLoS Pathog.
Volume: 12
Number: 6
Date: 2016
Publisher: PUBLIC LIBRARY SCIENCE
Place of Publication: SAN FRANCISCO
ISSN: 1553-7374
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
CONSERVED TRANSCRIPTIONAL REGULATOR; CANDIDA-ALBICANS; SCHIZOSACCHAROMYCES-POMBE; REPLACEMENT MUTANTS; FUNCTIONAL-ANALYSIS; SECRETED EFFECTOR; SYNTHASE GENES; SMUT FUNGUS; YEAST; VIRULENCEMultiple languages
Microbiology; Parasitology; VirologyMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/27319

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item