Janssen, Joseph A. M. J. L., Hofland, Leo J., Strasburger, Christian J., van den Dungen, Elisabeth S. R. and Thevis, Mario (2016). Potency of Full-Length MGF to Induce Maximal Activation of the IGF-I R Is Similar to Recombinant Human IGF-I at High Equimolar Concentrations. PLoS One, 11 (3). SAN FRANCISCO: PUBLIC LIBRARY SCIENCE. ISSN 1932-6203

Full text not available from this repository.

Abstract

Aims To compare full-length mechano growth factor (full-length MGF) with human recombinant insulin-like growth factor-I (IGF-I) and human recombinant insulin (HI) in their ability to activate the human IGF-I receptor (IGF-IR), the human insulin receptor (IR-A) and the human insulin receptor-B (IR-B), respectively. In addition, we tested the stimulatory activity of human MGF and its stabilized analog Goldspink-MGF on the IGF-IR. Methods The effects of full-length MGF, IGF-I, human mechano growth factor (MGF), Goldspink-MGF and HI were compared using kinase specific receptor activation (KIRA) bioassays specific for IGF-I, IR-A or IR-B, respectively. These assays quantify activity by measuring auto-phosphorylation of the receptor upon ligand binding. Results IGF-IR: At high equimolar concentrations maximal IGF-IR stimulating effects generated by full-length MGF were similar to that of IGF-I (89-fold vs. 77-fold, respectively). However, EC50 values of IGF-I and full-length MGF for the IGF-I receptor were 0.86 nmol/L (95% CI 0.69-1.07) and 7.83 nmol/L (95% CI: 4.87-12.58), respectively. No IGF-IR activation was observed by human MGF and Goldspink-MGF, respectively. IR-A/IR-B: At high equimolar concentrations similar maximal IR-A stimulating effects were observed for full-length MGF and HI, but maximal IR-B stimulation achieved by full -length MGF was stronger than that by HI (292-fold vs. 98-fold). EC50 values of HI and full-length MGF for the IR-A were 1.13 nmol/L (95% CI 0.69-1.84) and 73.11 nmol/L (42.87-124.69), respectively; for IR-B these values were 1.28 nmol/L (95% CI 0.64-2.57) and 35.10 nmol/L (95% 17.52-70.33), respectively. Conclusions Full-length MGF directly stimulates the IGF-IR. Despite a higher EC50 concentration, at high equimolar concentrations full-length MGF showed a similar maximal potency to activate the IGF-IR as compared to IGF-I. Further research is needed to understand the actions of full-length MGF in vivo and to define the physiological relevance of our in vitro findings.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Janssen, Joseph A. M. J. L.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hofland, Leo J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Strasburger, Christian J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
van den Dungen, Elisabeth S. R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Thevis, MarioUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-281194
DOI: 10.1371/journal.pone.0150453
Journal or Publication Title: PLoS One
Volume: 11
Number: 3
Date: 2016
Publisher: PUBLIC LIBRARY SCIENCE
Place of Publication: SAN FRANCISCO
ISSN: 1932-6203
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
MECHANO-GROWTH-FACTOR; SKELETAL-MUSCLE; INSULIN; PEPTIDE; BIOACTIVITY; PROTEINS; PRODUCT; ANALOGS; BINDINGMultiple languages
Multidisciplinary SciencesMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/28119

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item