Fang, Xin, Fourier, Ghislain and Reineke, Markus (2016). PBW-type filtration on quantum groups of type A(n). J. Algebra, 449. S. 321 - 346. SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE. ISSN 1090-266X
Full text not available from this repository.Abstract
We will introduce an N-filtration on the negative part of a quantum group of type An, such that the associated graded algebra is a q-commutative polynomial algebra. This filtration is given in terms of the representation theory of quivers, by realizing the quantum group as the Hall algebra of a quiver. We show that the induced associated graded module of any simple finite-dimensional module (of type 1) is isomorphic to a quotient of this polynomial algebra by a monomial ideal, and we provide a monomial basis for this associated graded module. This construction can be viewed as a quantum analog of the classical PBW framework, and in fact, by considering the classical limit, this basis is the monomial basis provided by Feigin, Littelmann and the second author in the classical setup. (C) 2015 Elsevier Inc. All rights reserved.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-282161 | ||||||||||||||||
DOI: | 10.1016/j.jalgebra.2015.09.054 | ||||||||||||||||
Journal or Publication Title: | J. Algebra | ||||||||||||||||
Volume: | 449 | ||||||||||||||||
Page Range: | S. 321 - 346 | ||||||||||||||||
Date: | 2016 | ||||||||||||||||
Publisher: | ACADEMIC PRESS INC ELSEVIER SCIENCE | ||||||||||||||||
Place of Publication: | SAN DIEGO | ||||||||||||||||
ISSN: | 1090-266X | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
Refereed: | Yes | ||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/28216 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |