Wilhelmy, J., Muescher, M., Rusev, G., Schwengner, R., Beyer, R., Bhike, M., Erbacher, P., Fiedler, F., Friman-Gayer, U., Glorius, J., Greifenhagen, R., Hammer, S., Hensel, T., Isaak, J., Junghans, A. R., Loeher, B., Mueller, S. E., Pietralla, N., Reinicke, S., Savran, D., Scholz, P., Sonnabend, K., Szuecs, T., Tamkas, M., Tornow, W., Turkat, S., Wagner, A. and Zilges, A. (2020). Dipole response of Rb-87 and its impact on the Rb-86(n, gamma) Rb-87 cross section. Phys. Rev. C, 102 (4). COLLEGE PK: AMER PHYSICAL SOC. ISSN 2469-9993

Full text not available from this repository.

Abstract

Background: Detailed information on the low-lying dipole response in atomic nuclei along isotonic or isotopic chains is well suited to systematically investigate the structure and evolution of the pygmy dipole resonance (PDR). Moreover, the dipole strength below and around the neutron separation energy S-n has impact on statistical model calculations for nucleosynthesis processes. Purpose: The photon strength function (PSF) of Rb-87, which is directly connected to the photoabsorption cross section, is a crucial input for statistical model calculations constraining the Maxwellian-averaged cross section (MACS) of the neutron capture of the unstable s-process branching-point nucleus Rb-86. Within this work, the photoabsorption cross section is investigated. Methods: The photoabsorption cross section of the N = 50 nucleus Rb-87 was determined from photon-scattering experiments via the nuclear resonance fluorescence (NRF) technique. Bremsstrahlung beams at the gamma ELBE facility in conjunction with monoenergetic photon beams at the HI gamma S facility were used to determine the integrated cross sections I-s of isolated states as well as the averaged cross section as function of the excitation energy. Decays to the ground state were disentangled from decays to first low-lying excited states. Statistical and experimental approaches for the gamma-decay properties at various excitation energies were applied. The linearly polarized photon beams at HI gamma S provide information on the ratio of electric and magnetic type of radiation. Results: Within this work, more than 200 ground-state decays and associated levels in Rb-87 were identified. Moreover, transitions below the sensitivity limit of the state-by-state analysis were taken into account via a statistical approach from the bremsstrahlung data as well as model-independently from the HI gamma S data. The photoabsorption cross sections at various excitation energies were determined. The dipole response between 6 and 10 MeV of Rb-87 is in agreement with assuming contributions of electric multipolarity, only. Conclusions: The photoabsorption cross section of Rb-87 does not contradict with the trend of decreasing E1 strength with increasing proton number along the N = 50 isotonic chain but might also be associated with a constant trend. The experimental gamma decay at various excitation energies of the HI gamma S data supports the statistical approach but does not provide a stringent proof due to the limited sensitivity in the decay channels. The additional E1 strength observed in the present experiments significantly enhances the MACSs compared only to recent microscopic HFB+QRPA (Hartree-Fock-Bogoliubov plus quasiparticle random-phase approximation) calculations using the D1M interaction. Moreover, theoretical estimations provided by the KADoNiS project could be significantly improved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Wilhelmy, J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Muescher, M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Rusev, G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schwengner, R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Beyer, R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Bhike, M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Erbacher, P.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Fiedler, F.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Friman-Gayer, U.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Glorius, J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Greifenhagen, R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hammer, S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hensel, T.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Isaak, J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Junghans, A. R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Loeher, B.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mueller, S. E.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Pietralla, N.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Reinicke, S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Savran, D.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Scholz, P.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sonnabend, K.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Szuecs, T.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Tamkas, M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Tornow, W.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Turkat, S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wagner, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zilges, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-314274
DOI: 10.1103/PhysRevC.102.044327
Journal or Publication Title: Phys. Rev. C
Volume: 102
Number: 4
Date: 2020
Publisher: AMER PHYSICAL SOC
Place of Publication: COLLEGE PK
ISSN: 2469-9993
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
PHOTON STRENGTH FUNCTIONS; RESONANCE; EXCITATIONS; STATES; SCATTERING; ENERGY; FORMULA; NUCLEIMultiple languages
Physics, NuclearMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/31427

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item