Motiyenko, R. A., Belloche, A., Garrod, R. T., Margules, L., Mueller, H. S. P., Menten, K. M. and Guillemin, J. -C. (2020). Millimeter- and submillimeter-wave spectroscopy of thioformamide and interstellar search toward Sgr B2(N). Astron. Astrophys., 642. LES ULIS CEDEX A: EDP SCIENCES S A. ISSN 1432-0746

Full text not available from this repository.

Abstract

Context. Thioformamide NH2CHS is a sulfur-bearing analog of formamide NH2CHO. The latter was detected in the interstellar medium back in the 1970s. Most of the sulfur-containing molecules detected in the interstellar medium are analogs of corresponding oxygen-containing compounds. Therefore, thioformamide is an interesting candidate for a search in the interstellar medium.Aims. A previous study of the rotational spectrum of thioformamide was limited to frequencies below 70 GHz and to transitions with J <= 3. The aim of this study is to provide accurate spectroscopic parameters and rotational transition frequencies for thioformamide to enable astronomical searches for this molecule using radio telescope arrays at millimeter wavelengths.Methods. The rotational spectrum of thioformamide was measured and analyzed in the frequency range 150-660 GHz using the Lille spectrometer. We searched for thioformamide toward the high-mass star-forming region Sagittarius (Sgr) B2(N) using the ReMoCA spectral line survey carried out with the Atacama Large Millimeter/submillimeter Array.Results. Accurate rigid rotor and centrifugal distortion constants were obtained from the analysis of the ground state of parent, S-34, C-13, and N-15 singly substituted isotopic species of thioformamide. In addition, for the parent isotopolog, the lowest two excited vibrational states, v(12)=1 and v(9)=1, were analyzed using a model that takes Coriolis coupling into account. Thioformamide was not detected toward the hot cores Sgr B2(N1S) and Sgr B2(N2). The sensitive upper limits indicate that thioformamide is nearly three orders of magnitude at least less abundant than formamide. This is markedly different from methanethiol, which is only about two orders of magnitude less abundant than methanol in both sources.Conclusions. The different behavior shown by methanethiol versus thioformamide may be caused by the preferential formation of the latter (on grains) at late times and low temperatures, when CS abundances are depressed. This reduces the thioformamide-to-formamide ratio, because the HCS radical is not as readily available under these conditions.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Motiyenko, R. A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Belloche, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Garrod, R. T.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Margules, L.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mueller, H. S. P.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Menten, K. M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Guillemin, J. -C.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-316898
DOI: 10.1051/0004-6361/202038723
Journal or Publication Title: Astron. Astrophys.
Volume: 642
Date: 2020
Publisher: EDP SCIENCES S A
Place of Publication: LES ULIS CEDEX A
ISSN: 1432-0746
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
GAS-PHASE FORMATION; MOLECULEMultiple languages
Astronomy & AstrophysicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/31689

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item