Genz, Volker, Koshevoy, Gleb and Schumann, Bea (2020). Polyhedral parametrizations of canonical bases & cluster duality. Adv. Math., 369. SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE. ISSN 1090-2082
Full text not available from this repository.Abstract
We establish the relation of Berenstein-Kazhdan's decoration function and Gross-Hacking-Keel-Kontsevich's potential on the open double Bruhat cell in the base affine space G/N of a simple, simply connected, simply laced algebraic group G. As a byproduct we derive explicit identifications of polyhedral parametrization of canonical bases of the ring of regular functions on G/N arising from the tropicalizations of the potential and decoration function with the classical string and Lusztig parametrizations. In the appendix we construct maximal green sequences for the open double Bruhat cell in G/N which is a crucial assumption for Gross- Hacking-Keel-Kontsevich's construction. (C) 2020 Elsevier Inc. All rights reserved.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-323918 | ||||||||||||||||
DOI: | 10.1016/j.aim.2020.107178 | ||||||||||||||||
Journal or Publication Title: | Adv. Math. | ||||||||||||||||
Volume: | 369 | ||||||||||||||||
Date: | 2020 | ||||||||||||||||
Publisher: | ACADEMIC PRESS INC ELSEVIER SCIENCE | ||||||||||||||||
Place of Publication: | SAN DIEGO | ||||||||||||||||
ISSN: | 1090-2082 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/32391 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |