Klesov, O. I. and Steinebach, J. G. (2020). On preserving the limit points of corresponding objects. J. Math. Anal. Appl., 486 (2). SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE. ISSN 1096-0813
Full text not available from this repository.Abstract
Suppose that, for two given sequences {a(n)} and {b(n)}, lim inf(n ->infinity) b(n)/a(n) = 1 and let a function f be given. What can then be said about the limit behavior of the corresponding ratio f(b(n))/f(a(n)) as n -> infinity ? In general, no definite answer can be given to this question. We study a case where a definite answer is possible, namely the case of a regularly varying function f of nonzero order. (C) 2020 Elsevier Inc. All rights reserved.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-330007 | ||||||||||||
DOI: | 10.1016/j.jmaa.2020.123916 | ||||||||||||
Journal or Publication Title: | J. Math. Anal. Appl. | ||||||||||||
Volume: | 486 | ||||||||||||
Number: | 2 | ||||||||||||
Date: | 2020 | ||||||||||||
Publisher: | ACADEMIC PRESS INC ELSEVIER SCIENCE | ||||||||||||
Place of Publication: | SAN DIEGO | ||||||||||||
ISSN: | 1096-0813 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/33000 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |