Schrader, Rainer ORCID: 0000-0001-6635-0132 and Stenmans, Lukas (2020). A de Bruijn-Erdos Theorem for (q, q-4)-graphs. Discret Appl. Math., 279. S. 198 - 202. AMSTERDAM: ELSEVIER. ISSN 1872-6771
Full text not available from this repository.Abstract
Based on a ternary betweenness relation, Coxeter introduced the notion of a line in ordered geometries. Later, Chen and Chvatal observed that in particular the distance function of a finite metric space induces a betweenness relation. They conjecture that in every metric space on n points either all points lie on one line or there exist n mutually distinct lines. A weaker version conjectures that this holds for every finite graph on n vertices with the graph-theoretic distance. We prove this conjecture for (q, q-4)-graphs. (C) 2019 Elsevier B.V. All rights reserved.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-332545 | ||||||||||||
DOI: | 10.1016/j.dam.2019.11.008 | ||||||||||||
Journal or Publication Title: | Discret Appl. Math. | ||||||||||||
Volume: | 279 | ||||||||||||
Page Range: | S. 198 - 202 | ||||||||||||
Date: | 2020 | ||||||||||||
Publisher: | ELSEVIER | ||||||||||||
Place of Publication: | AMSTERDAM | ||||||||||||
ISSN: | 1872-6771 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Institute of Computer Science | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/33254 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |