Konschak, Marco, Zubrod, Jochen P., Baudy, Patrick, Fink, Patrick ORCID: 0000-0002-5927-8977, Kenngott, Kilian, Luederwald, Simon, Englert, Katja, Jusi, Cynthia, Schulz, Ralf ORCID: 0000-0002-6348-6971 and Bundschuh, Mirco ORCID: 0000-0003-4876-220X (2020). The importance of diet-related effects of the antibiotic ciprofloxacin on the leaf-shredding invertebrate Gammarus fossarum (Crustacea; Amphipoda). Aquat. Toxicol., 222. AMSTERDAM: ELSEVIER. ISSN 1879-1514

Full text not available from this repository.

Abstract

Antibiotics may constitute a risk for aquatic detritivorous macroinvertebrates (i.e., shredders) via waterborne and dietary antibiotic exposure. In addition, antibiotics can alter the food quality for shredders mediated by shifts in leaf-associated decomposer (i.e., aquatic fungi and bacteria) communities. However, little is known about the relative importance of the waterborne and dietary effect pathway. Therefore, we followed a tiered testing approach aimed at assessing the relative importance of these effect pathways. We employed the antibiotic ciprofloxacin (CIP) and the shredder Gammarus fossarum as model stressor and test species, respectively. In a first step, we assessed the short-term waterborne toxicity of CIP using survival and leaf consumption of G. fossarum as response variables. Alterations in the leaf-associated decomposer community, which may be reflected by their palatability, were assessed using food choice assays. Finally, we conducted a 2 x 2-factorial experiment over 24 days assessing the pathways individually and combined using energy processing (i.e., leaf consumption and feces production), growth and energy storage (i.e., neutral lipid fatty acids) as variables. Short term waterborne exposure indicated low toxicity with LC50 and EC50 values of 13.6 and 6.4 mg CIP/L, respectively. At the same time, shredders did not prefer any leaf material during the food choice assay. However, the fungal community was significantly affected in the highest CIP-treatments (0.5 and 2.5 mg/L) suggesting an altered food quality for shredders. This assumption is supported by the results of the long-term assay. At 0.5 mg CIP/L, gammarids' leaf consumption, growth and energy storage were increased when subjected via the dietary pathway, which was linked to changes in the leaf-associated microbial community. Our data highlight the importance of dietary effect pathways for effects on shredders, potentially impacting energy dynamics in detritus-based stream ecosystems.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Konschak, MarcoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zubrod, Jochen P.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Baudy, PatrickUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Fink, PatrickUNSPECIFIEDorcid.org/0000-0002-5927-8977UNSPECIFIED
Kenngott, KilianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Luederwald, SimonUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Englert, KatjaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Jusi, CynthiaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schulz, RalfUNSPECIFIEDorcid.org/0000-0002-6348-6971UNSPECIFIED
Bundschuh, MircoUNSPECIFIEDorcid.org/0000-0003-4876-220XUNSPECIFIED
URN: urn:nbn:de:hbz:38-335880
DOI: 10.1016/j.aquatox.2020.105461
Journal or Publication Title: Aquat. Toxicol.
Volume: 222
Date: 2020
Publisher: ELSEVIER
Place of Publication: AMSTERDAM
ISSN: 1879-1514
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
FATTY-ACID PROFILES; LITTER DECOMPOSITION; RISK-ASSESSMENT; STREAM FUNGI; RAPID METHOD; WATER; GROWTH; TOXICITY; DETRITUS; BACTERIAMultiple languages
Marine & Freshwater Biology; ToxicologyMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/33588

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item