Gribisch, Bastian and Stollenwerk, Michael (2020). Dynamic principal component CAW models for high-dimensional realized covariance matrices. Quant. Financ., 20 (5). S. 799 - 822. ABINGDON: ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD. ISSN 1469-7696
Full text not available from this repository.Abstract
We propose a new dynamic principal component CAW model (DPC-CAW) for time-series of high-dimensional realized covariance matrices of asset returns (up to 100 assets). The model performs a spectral decomposition of the scale matrix of a central Wishart distribution and assumes independent dynamics for the principal components' variances and the eigenvector processes. A three-step estimation procedure makes the model applicable to high-dimensional covariance matrices. We analyze the finite sample properties of the estimation approach and provide an empirical application to realized covariance matrices for 100 assets. The DPC-CAW model has particularly good forecasting properties and outperforms its competitors for realized covariance matrices.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-348049 | ||||||||||||
DOI: | 10.1080/14697688.2019.1701197 | ||||||||||||
Journal or Publication Title: | Quant. Financ. | ||||||||||||
Volume: | 20 | ||||||||||||
Number: | 5 | ||||||||||||
Page Range: | S. 799 - 822 | ||||||||||||
Date: | 2020 | ||||||||||||
Publisher: | ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD | ||||||||||||
Place of Publication: | ABINGDON | ||||||||||||
ISSN: | 1469-7696 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/34804 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |