May, Simon Matthias, Meine, Lennart, Hoffmeister, Dirk ORCID: 0000-0002-8178-557X, Brill, Dominik ORCID: 0000-0001-8637-4641, Medialdea, Alicia ORCID: 0000-0001-5895-0736, Wennrich, Volker ORCID: 0000-0003-3617-1963, Groebner, Marie, Schulte, Philipp, Steininger, Florian, Deprez, Maxim, de Kock, Tim and Bubenzer, Olaf (2020). Origin and timing of past hillslope activity in the hyper-arid core of the Atacama Desert The formation of fine sediment lobes along the Chuculay Fault System, Northern Chile. Glob. Planet. Change, 184. AMSTERDAM: ELSEVIER. ISSN 1872-6364

Full text not available from this repository.

Abstract

Hillslopes represent areas of predominant denudation and constitute the transition and trajectory to floodplains; they play a crucial role in understanding the longterm landscape evolution of desert environments. However, although hillslope processes are known to be very slow or even stagnant in (hyper-) arid environments, process mechanisms under the virtual absence of water are poorly understood, and process rates are essentially unknown. Based on irrigation experiments, different monitoring techniques including drone-based high-resolution digital elevation models, geomorphological, stratigraphical, geochronological (OSL), sedimentological and geochemical investigations, as well as mu CT scans of sediment cores, this contribution presents detailed insights into the chronostratigraphy of tongue-shaped, 50 m-long and 30 m-wide fine sediment lobes located along a 10-30 degrees steep thrust-related slope east of the Salar Grande (Atacama, Chile). Irrigation experiments were performed to gain insights into precipitation thresholds for surface runoff and hillslope dynamics. Although artificial rainfall intensities were similar to 46 mm/h, infiltration was 100%, and the experiments did not initiate surface runoff or (detectable) slope material displacements. In addition, a distinct stratigraphic pattern with buried paleo-surfaces and paleo-biological surface crusts suggests increased hillslope activity during the late Pleistocene, potentially driven by changes of (fog-induced) humidity, salt-related shrink and swell processes, or paleo-seismic activity. While a variety of geo-bio-archives document periods of increased precipitation in the Andean parts of the Atacama Desert throughout the Quaternary, evidence for contemporaneous paleoclimatic changes from areas disconnected to Andean precipitation fluctuations (i.e., the Coastal Cordillera) is scarce. In this regard, the investigated landforms potentially represent one of only few sediment records recording paleoclimatic changes in the central desert, independent from Andean rainfall.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
May, Simon MatthiasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Meine, LennartUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hoffmeister, DirkUNSPECIFIEDorcid.org/0000-0002-8178-557XUNSPECIFIED
Brill, DominikUNSPECIFIEDorcid.org/0000-0001-8637-4641UNSPECIFIED
Medialdea, AliciaUNSPECIFIEDorcid.org/0000-0001-5895-0736UNSPECIFIED
Wennrich, VolkerUNSPECIFIEDorcid.org/0000-0003-3617-1963UNSPECIFIED
Groebner, MarieUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schulte, PhilippUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Steininger, FlorianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Deprez, MaximUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
de Kock, TimUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Bubenzer, OlafUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-351946
DOI: 10.1016/j.gloplacha.2019.103057
Journal or Publication Title: Glob. Planet. Change
Volume: 184
Date: 2020
Publisher: ELSEVIER
Place of Publication: AMSTERDAM
ISSN: 1872-6364
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
PORTABLE RAINFALL SIMULATOR; TARAPACA REGION; CLIMATE-CHANGE; LANDSCAPE EVOLUTION; ZEBRA STRIPES; RECORD; MIOCENE; FOG; IGNIMBRITES; SEISMICITYMultiple languages
Geography, Physical; Geosciences, MultidisciplinaryMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/35194

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item