Coulembier, Kevin ORCID: 0000-0003-0996-3965 and Kieburg, Mario (2015). Pizzetti Formulae for Stiefel Manifolds and Applications. Lett. Math. Phys., 105 (10). S. 1333 - 1377. DORDRECHT: SPRINGER. ISSN 1573-0530
Full text not available from this repository.Abstract
Pizzetti's formula explicitly shows the equivalence of the rotation invariant integration over a sphere and the action of rotation invariant differential operators. We generalize this idea to the integrals over real, complex, and quaternion Stiefel manifolds in a unifying way. In particular, we propose a new way to calculate group integrals and try to uncover some algebraic structures which manifest themselves for some well-known cases like the Harish-Chandra integral. We apply a particular case of our formula to an Itzykson-Zuber integral for the coset . This integral naturally appears in the calculation of the two-point correlation function in the transition of the statistics of the Poisson ensemble and the Gaussian orthogonal ensemble in random matrix theory.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-392456 | ||||||||||||
DOI: | 10.1007/s11005-015-0774-x | ||||||||||||
Journal or Publication Title: | Lett. Math. Phys. | ||||||||||||
Volume: | 105 | ||||||||||||
Number: | 10 | ||||||||||||
Page Range: | S. 1333 - 1377 | ||||||||||||
Date: | 2015 | ||||||||||||
Publisher: | SPRINGER | ||||||||||||
Place of Publication: | DORDRECHT | ||||||||||||
ISSN: | 1573-0530 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/39245 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |