Bundschuh, Peter and Vaananen, Keijo (2015). ALGEBRAIC INDEPENDENCE OF RECIPROCAL SUMS OF POWERS OF CERTAIN FIBONACCI-TYPE NUMBERS. Funct. Approx. Comment. Math., 53 (1). S. 47 - 69. POZNAN: WYDAWNICTWO NAUKOWE UAM. ISSN 0208-6573
Full text not available from this repository.Abstract
The Fibonacci-type numbers in the title look like R-n = g(1)gamma(n)(1) + g(2)gamma(n)(2) and S-n = h(1)gamma(n)(1) + h(2)gamma(n)(2) for any n is an element of Z, where the g's, h's, and gamma's are given algebraic numbers satisfying certain natural conditions. For fixed k is an element of Z(>0), and for fixed non-zero periodic sequences (a(h)), (b(h)), (c(h)) of algebraic numbers, the algebraic independence of the series Sigma(infinity)(h=0) a(h)/gamma(krh)(1), Sigma(infinity)(h=0)' b(h)/(R-kr(+l)h)(m), Sigma(infinity)(h=0)' c(h)/(S-kr(+l)h)(m) ((l, m, r) is an element of z x z(>0) x z(>1)) is studied. Here the main tool is Mahler's method which reduces the investigation of the algebraic independence of numbers (over Q) to that of functions (over the rational function field) if they satisfy certain types of functional equations.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-395502 | ||||||||||||
DOI: | 10.7169/facm/2015.53.1.4 | ||||||||||||
Journal or Publication Title: | Funct. Approx. Comment. Math. | ||||||||||||
Volume: | 53 | ||||||||||||
Number: | 1 | ||||||||||||
Page Range: | S. 47 - 69 | ||||||||||||
Date: | 2015 | ||||||||||||
Publisher: | WYDAWNICTWO NAUKOWE UAM | ||||||||||||
Place of Publication: | POZNAN | ||||||||||||
ISSN: | 0208-6573 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/39550 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |