de laat, David and Vallentin, Frank ORCID: 0000-0002-3205-4607 (2015). A semidefinite programming hierarchy for packing problems in discrete geometry. Math. Program., 151 (2). S. 529 - 554. HEIDELBERG: SPRINGER HEIDELBERG. ISSN 1436-4646
Full text not available from this repository.Abstract
Packing problems in discrete geometry can be modeled as finding independent sets in infinite graphs where one is interested in independent sets which are as large as possible. For finite graphs one popular way to compute upper bounds for the maximal size of an independent set is to use Lasserre's semidefinite programming hierarchy. We generalize this approach to infinite graphs. For this we introduce topological packing graphs as an abstraction for infinite graphs coming from packing problems in discrete geometry. We show that our hierarchy converges to the independence number.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-400779 | ||||||||||||
DOI: | 10.1007/s10107-014-0843-4 | ||||||||||||
Journal or Publication Title: | Math. Program. | ||||||||||||
Volume: | 151 | ||||||||||||
Number: | 2 | ||||||||||||
Page Range: | S. 529 - 554 | ||||||||||||
Date: | 2015 | ||||||||||||
Publisher: | SPRINGER HEIDELBERG | ||||||||||||
Place of Publication: | HEIDELBERG | ||||||||||||
ISSN: | 1436-4646 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/40077 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |