Alldridge, Alexander ORCID: 0000-0001-6331-1672 and Schmittner, Sebastian ORCID: 0000-0001-5739-4715 (2015). Spherical representations of Lie supergroups. J. Funct. Anal., 268 (6). S. 1403 - 1454. SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE. ISSN 1096-0783

Full text not available from this repository.

Abstract

The classical Cartan Helgason Theorem characterises finite-dimensional spherical representations of reductive Lie groups in terms of their highest weights. We generalise the theorem to the case of a reductive symmetric supergroup pair (G, K) of even type. Along the way, we compute the Harish-Chandra c-function of the symmetric superspace G/K. By way of an application, we show that in type AIII vertical bar AIII, all spherical representations are self-dual. (C) 2014 Elsevier Inc. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Alldridge, AlexanderUNSPECIFIEDorcid.org/0000-0001-6331-1672UNSPECIFIED
Schmittner, SebastianUNSPECIFIEDorcid.org/0000-0001-5739-4715UNSPECIFIED
URN: urn:nbn:de:hbz:38-409822
DOI: 10.1016/j.jfa.2014.11.018
Journal or Publication Title: J. Funct. Anal.
Volume: 268
Number: 6
Page Range: S. 1403 - 1454
Date: 2015
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Place of Publication: SAN DIEGO
ISSN: 1096-0783
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
REDUCTIVE SYMMETRIC SUPERPAIRS; CARTAN-HELGASON THEOREM; BEREZIN INTEGRATION; SUPERMANIFOLDS; SPACES; CLASSIFICATION; SUPERSPACESMultiple languages
MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/40982

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item