van Tricht, Mirjam J., Ruhrmann, Stephan ORCID: 0000-0002-6022-2364, Arns, Martijn ORCID: 0000-0002-0610-7613, Mueller, Ralf, Bodatsch, Mitja, Velthorst, Eva ORCID: 0000-0002-9240-2909, Koelman, Johannes H. T. M., Bour, Lo J., Zurek, Katharina, Schultze-Lutter, Frauke, Klosterkoetter, Joachim, Linszen, Don H., de Haan, Lieuwe, Brockhaus-Dumke, Anke and Nieman, Dorien H. (2014). Can quantitative EEG measures predict clinical outcome in subjects at Clinical High Risk for psychosis? A prospective multicenter study. Schizophr. Res., 153 (1-3). S. 42 - 48. AMSTERDAM: ELSEVIER SCIENCE BV. ISSN 1573-2509

Full text not available from this repository.

Abstract

Background: Prediction studies in subjects at Clinical High Risk (CHR) for psychosis are hampered by a high proportion of uncertain outcomes. We therefore investigated whether quantitative EEG (QEEG) parameters can contribute to an improved identification of CHR subjects with a later conversion to psychosis. Methods: This investigation was a project within the European Prediction of Psychosis Study (EPOS), a prospective multicenter, naturalistic field study with an 18-month follow-up period. QEEG spectral power and alpha peak frequencies (APF) were determined in 113 CHR subjects. The primary outcome measure was conversion to psychosis. Results: Cox regression yielded a model including frontal theta (HR = 1.82; [95% CI 1.00-3.32]) and delta (HR = 2.60; [95% CI 1.30-5.20]) power, and occipital-parietal APF (HR = .52; [95% CI.35-.80]) as predictors of conversion to psychosis. The resulting equation enabled the development of a prognostic index with three risk classes (hazard rate 0.057 to 0.81). Conclusions: Power in theta and delta ranges and APF contribute to the short-term prediction of psychosis and enable a further stratification of risk in CHR samples. Combined with (other) clinical ratings, EEG parameters may therefore be a useful tool for individualized risk estimation and, consequently, targeted prevention. (C) 2014 Elsevier B. V. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
van Tricht, Mirjam J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ruhrmann, StephanUNSPECIFIEDorcid.org/0000-0002-6022-2364UNSPECIFIED
Arns, MartijnUNSPECIFIEDorcid.org/0000-0002-0610-7613UNSPECIFIED
Mueller, RalfUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Bodatsch, MitjaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Velthorst, EvaUNSPECIFIEDorcid.org/0000-0002-9240-2909UNSPECIFIED
Koelman, Johannes H. T. M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Bour, Lo J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zurek, KatharinaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schultze-Lutter, FraukeUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Klosterkoetter, JoachimUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Linszen, Don H.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
de Haan, LieuweUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Brockhaus-Dumke, AnkeUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Nieman, Dorien H.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-444593
DOI: 10.1016/j.schres.2014.01.019
Journal or Publication Title: Schizophr. Res.
Volume: 153
Number: 1-3
Page Range: S. 42 - 48
Date: 2014
Publisher: ELSEVIER SCIENCE BV
Place of Publication: AMSTERDAM
ISSN: 1573-2509
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
PRODROMAL PSYCHOSIS; META-ANALYSIS; RESTING EEG; SCHIZOPHRENIA; HERITABILITY; EPISODE; P300; OSCILLATIONS; TRANSITION; RELATIVESMultiple languages
PsychiatryMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/44459

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item