Kawohl, Bernd and Kroemer, Stefan (2012). Uniqueness and symmetry of minimizers of Hartree type equations with external Coulomb potential. Adv. Calc. Var., 5 (4). S. 427 - 433. BERLIN: WALTER DE GRUYTER & CO. ISSN 1864-8258

Full text not available from this repository.

Abstract

In a recent paper, Georgiev and Venkov establish first radial symmetry and then uniqueness of minimizers to a certain functional. In the present paper we prove first the uniqueness of possible positive minimizers by revealing a hidden convexity property of the underlying functional. Then symmetry follows from the simple observation that uniqueness fails if there is a nonradial minimizer, because it could be rotated and give rise to a second minimizer.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Kawohl, BerndUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kroemer, StefanUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-481303
DOI: 10.1515/ACV.2011.020
Journal or Publication Title: Adv. Calc. Var.
Volume: 5
Number: 4
Page Range: S. 427 - 433
Date: 2012
Publisher: WALTER DE GRUYTER & CO
Place of Publication: BERLIN
ISSN: 1864-8258
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
INEQUALITIES; EXISTENCEMultiple languages
Mathematics, Applied; MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/48130

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item