References: |
[1] D. Aharonov, A. Ambainis, J. Kempe and U. Vazirani (2001): Quantum Walks
on Graphs. STOC ’01 Proceedings of the thirty-third annual ACM symposium on
Theory of computing.
[2] E. Algaba, J.M Bilbao, R. van den Brink and A. Jiménez-Losada (2004): Cooper-
ative Games on Antimatroids. Discr. Mathematics 282, 1-15.
[3] M. Aigner (1979): Combinatorial Theory. Springer-Verlag.
[4] A. Ambainis (2003): Quantum walks and their algorithmic applications. Interna-
tional Journal of Quantum Information 1 (4): 507–518.
[5] K. J. Arrow (1963): Social Choice and Individual Values. John Wiley & Sons, Inc.,
New York.
[6] R.J. Aumann and J.H. Drèze (1974): Cooperative Games with Cooperation Struc-
ture. Int. J. of Game Theory 3, 217-237.
[7] J.P. Aumann (1959): Acceptable Points in General Cooperative n-person Games.
In: Tucker, A.W., Luce, R.D. (eds.) Contributions to the Theory of Games IV.
Princeton: Princeton University Press.
[8] J.F. Banzhaf (1965): Weighted Voting Doesn’t Work: A Mathematical Analysis.
Rutgers Law Review 19:317–343.
[9] M. Beck and S. Robins (2007): Counting the Continuous Discretely. Springer-
Verlag.
[10] W. R. Belding (1973): Incidence Rings of Pre-ordered Sets. Notre Dame J. Formal
Logic Volume 14, Number 4, 481-509.
[11] J.M. Bilbao, N. Jiménez Losada E. Lebrón and J.J López (2006): The Marginal
operators for Games on Convex Geometries. Intern. Game Theory Review 8, 141-151.
[12] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaître, N. Maudet, J. Pad-
get, S. Phelps, J. A. Rodríguez-Aguilar, and P. Sousa (2006): Issues in Multiagent
Resource Allocation. Informatica, 30:3-31.
[13] J.M. Bilbao (2000): Cooperative Games on Combinatorial Structures. Kluwer
Academic Publishers.
[14] J.M. Bilbao (2003): Cooperative Games under Augmenting Systems. SIAM Jour-
nal on Discrete Mathematics, 24, 992-1010.
[15] J.M. Bilbao, T.S.H. Driessen, N. Jiménez-Losada E. Lebrón (2001): The Shapley
Value for Games on Matroids. Math. Meth. Oper. Res. 53, 333-348.
[16] J.M. Bilbao, J.R. Fernández, N. Jiménez and J.J. López (2008): Biprobabilistic
Values for Bicooperative Games. Discr. Appl. Math. 156, 14, 28, 2698-2711
[17] J.M. Bilbao, A. Jiménez-Losada and J.J. López (1998): The Banzhaf Power Index
on Convex Geometries. Math. Social Sciences 36, 157-173.
[18] P. Borm, H. Keiding, R.P. McLean, S. Oortwijn, S.H. Tijs (1992): The compro-
mise value for NTU-games. International Journal of Game Theory 21:175-189
[19] R. v.d. Brink, I. Katsev and G. v.d. Laan (2011): Axiomatizations of Two Types
of Shapley Values for Games on Union Closed Systems. to appear in Economic
Theory.
[20] F. Chung (2005): Laplacians and the Cheeger inequality for directed graphs. An-
nals of Combinatorics, 9, 1-19.
[21] Y. Chun (1991): On the Symmetric and Weighted Shapley Values. International
Journal of Game Theory 20, 183-190.
[22] J. Derks (1992): A Short Proof of the Inclusion of the Core in the Weber set. Int.
J. Game Theory 21, 149-150.
[23] J. Derks and H. Peters (1993): A Shapley Value for Games with Restricted Coali-
tions. International Journal of Game Theory, 21, 351-366.
[24] P.A.M. Dirac (1942): The Physical Interpretation of Quantum Mechanics. Proc.
Royal Soc. London A 180, 1-39.
[25] P. Dubey (1980): Asymptotic Semi-values and a Short Proof of Kannai’s Theorem.
Math. Oper. res. 5, 267-270.
[26] P. Dubey, A. Naham, R.J. Weber (1981): Value Theory without Efficiency. Math.
of Op. Res. 6, 122-128.
[27] J. Edmonds (1970): Submodular functions, matroids and certain polyhedra. Pro-
ceedings of the Calgary International Conference on Combinatorial Structures and
their Applications, 69-87.
[28] U. Faigle (1989): Cores of Games with Restricted Cooperation. Zeitschrift für
Operations Research 33, 405-422
[29] U. Faigle: Personal Communications. 2008-2012.
[30] U. Faigle and B. Peis (2008): A Hierarchical Model for Cooperative Games. in:
Algorithmic Game Theory, Proceedings SAGT 2008 Paderborn, Springer LNCS
4997, 230-241.
[31] U. Faigle and M. Grabisch (2011): Values for Markovian Coalition Processes.
Economic Theory, 1, 1-34.
[32] U. Faigle, M. Grabisch and M. Heyne (2010): Monge Extensions of Cooperation
and Communication Structures. European Journal of Operational Research, 206, 1,
104 - 110.
[33] U. Faigle, M. Heyne, Th. Kleefisch and J. Voss (2009): Coalition Formation in
Societies. Scientific Research Journal of South-West University 2, 13-18
[34] U. Faigle and W. Kern (1992): The Shapley Value for Cooperative Games under
Precedence Constraints. Intern. J. Game Theory 21, 249-266.
[35] U. Faigle and W. Kern (1991): Note on the Convergence of Simulated Annealing
Algorithms. SIAM J. Control and Optimization, 29, 153-159.
[36] U. Faigle, W. Kern and G. Still (2002): Algorithmic Principles of Mathematical
Programming. Kluwer Academic Publishers
[37] U. Faigle and J. Voss (2011): A System-theoretic Model for Cooperation, Interac-
tion and Allocation. Discrete Applied Mathematics, 159, 16, 1736–1750.
[38] U. Faigle and A. Schönhuth (2010): Discrete Quantum Markov Chains. Submit-
ted manuscript.
[39] U. Faigle and A. Schönhuth (2005): Note on Negative Probabilities and Ob-
servable Processes. In: S. Albers, R. Moehring, C. Pflug, R. Schultz (eds.) Algo-
rithms for Optimization with Incomplete Information Dagstuhl Seminar Proceed-
ings 05031, 108:1-14.
[40] J. Feigenbaum, J. Hershberger, A.A. Schäfer (1985): A Polynomial Time Algo-
rithm for Finding the Prime Factors of Cartesian–Product Graphs. Discrete Appl.
Math. 12 123-138.
[41] R.P. Feynman (1987): Quantum Implications. Essays in Honour of David Bohm,
B.J. Hiley and F.D. Peat eds., Routledge and Kegan Paul, London, 235-246.
[42] G. Frobenius (1912): Über Matrizen aus nicht negativen Elementen. Berl. Ber.
1912, 456-477.
[43] Y. Funaki and M. Grabisch (2008): A Coalition Formation Value for Games in
Partition Function Form. CES Working Papers, 2008.
[44] M. Grabisch and F. Lange (2007): Games on Lattices, Multichoice games and the
Shapley Value: a New Approach. Math. Methods of Oper. Res., Vol. 65, 153-167.
[45] M. Grabisch and L. Xie: The Restricted Core of Games on Distributive Lattices:
How to Share Benefits in a Hierarchy. Working paper.
[46] R.P. Gilles, G. Owen and R. van den Brink (1992): Games with Permission Struc-
tures: the Conjunctive Approach. Intern. J. Game Theory 20 (1992), 277-293.
[47] D.B. Gillies (1959): Solutions to General Non-zero-sum Games. Annals of Math-
ematics Studies 40: Contributions to the Theory of Games IV, Princeton University
Press, 47-85.
[48] Harsanyi, J.C. (1959): A bargaining model for the cooperative n–person games.
In: Contributions to the Theory of Games IV (A.W. Tucker and R.D. Luce, eds.),
Princeton University Press, 325–356.
[49] C.R. Hsiao and TES Raghavan (1993): Monotonicity and Dummy Free Property
for Multi-Choice Cooperative Games. Int. J. of Game Theory 21, 301-312.
[50] C.R. Hsiao and TES Raghavan (1993): Shapley Value for Multichoice Coopera-
tive Games. Games and Economic Behavior 5, 240-256.
[51] T.S. Han and K. Kobayashi (1994): Mathematics of Information and Coding.
Amer. math. Soc..
[52] J. Hajdukova (2006): Coalition Formation Games: A survey. Int. Game Theory
Review, 8, 613-641.
[53] J.L. Hougaard and L.P. Østerdal (2010): Monotonicity of Social Welfare Optima.
Games and Economic Behavior, vol. 70(2), 392-402.
[54] B. Huppert (1990): Angewandte Lineare Algebra. Berlin, de Gruyter.
[55] A. Irle (2005): Wahrscheinlichkeitstheorie und Statistik. 2. Auflage, Teubner Ver-
lag.
[56] B. Korte, L. Lovász and R. Schrader (1991): Greedoids. Springer Verlag.
[57] E. Kalai and D. Samet (1987): On Weighted Shapley Values. International Journal
of Game Theory, 16, 3, 205-222.
[58] E. Kalai and M. Smorodinsky (1975): Other Solutions to Nash’s Bargaining Prob-
lem. Econometrica 43 (3): 513–518.
[59] E. Kalai and E. Zemel (1982): On Totally Balanced Games and Games of Flow.
Mathematics of Operations Research, Vol. 7, 3.
[60] J. Kempe (2003): Quantum random walks - an introductory overview. Contempo-
rary Physics 44 (4): 307–327.
[61] S. Lang (2002): Algebra. Graduate Texts in Mathematics 211 ((Rev. 3rd ed.) ed.).
New York, Springer.
[62] D.A. Levin, Y. Peres and E.L. Wilmer (2006): Markov Chains and Mixing Times.
American Mathematical Society.
[63] I. Macho-Stadler, D. Perez-Castillo and D. Wettstein (2007): Sharing the Sur-
plus: An Extension of the Shapley Value for Environments with Externalities. J. of
Economic Theory, 135, 339-356.
[64] N. Megiddo (1975): Decomposition of Cooperative Games. SIAM Journal on
Applied Mathematics, 29, 3, 388-405.
[65] W. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller (1953):
Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21,
1087-1092.
[66] D. Monderer and L.S. Shapley (1996): Potential Games. Games and Econ. Behav.,
14, 124-143.
[67] A. Montanaro (2007): Quantum Walks on Directed Graphs. Quantum Inf. Comp,
7, 93-102.
[68] H. J. Moulin (2003): Fair Division and Collective Welfare. MIT Press, 2003.
[69] J. Nash (1950): Equilibrium points in n-person games. Proceedings of the Na-
tional Academy of Sciences 36(1), 48-49.
[70] J. v. Neumann and O. Morgenstern (1944): Theory of Games and Economic Be-
havior. Princeton University Press.
[71] N. Nisan, T. Roughgarden, É. Tardos and V. V. Vazirani (2007): Algorithmic
Game Theory. Camebridge University Press.
[72] G. Owen (1975): Multilinear Extensions and the Banzhaf Value. Naval Research
Logistics Quart 22:741–750.
[73] G. Owen (1964): Tensor Composition of non-negative Games, Advances in Game
Theory, M. Dresher,L. S. Shapley and A. W. Tucker, eds., Annals of Mathematics
Studies, No. 52, Princeton University Press. Princeton, 307-327.
[74] O. Perron: Zur Theorie der Matrices. Math. Ann. 64, 1907, 248-263.
[75] J.L. Ramírez-Alfonsín (1996): Complexity of the Frobenius Problem. Combina-
torica 16, 143-147.
[76] R.W. Rosenthal (1973): A class of games possessing pure-strategy Nash equilib-
ria. Int. J. of Game Theory, 2, 1, 65–67.
[77] G.-C.Rota (1964): On the Foundations of Combinatorial Theory I: Theory of
Möbius Functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebi-
ete 2, 4, 1964, 340–368.
[78] A.E. Roth (1977): The Shapley Value as a von Neumann-Morgenstern Utility,
Econometrica 45, 657-664.
[79] B. Russell (1912): Principia Mathematica. Cambridge University Press. vol. 2.
[80] G.Sabidussi (1960): Graph Multiplication. Math.Z. 72, 446-457.
[81] A. Schönhuth (2007): Diskretwertige stochastische Vektorräume, Dissertation
Universität zu Köln.
[82] L.S. Shapley (1953): A Value for n-Person Games. In: Contributions to the Theory
of Games, H.W. Kuhn and A.W. Tucker eds., Ann. Math. Studies 28, Princeton
University Press, 307-317.
[83] L.S. Shapley (1953): Additive and Non-additive Set Functions. PhD Thesis, De-
partment of Mathematics, Princeton University Press.
[84] L. S. Shapley (1962): Compound Simple Games I & II, RAND Corp., RM-3192,
RAND Corp., RM-3643.
[85] L.S. Shapley (1971): Cores of Convex Games. International Journal of Game
Theory, 1, 11-26.
[86] L.S. Shapley and Martin Shubik (1969): On Market Games. Journal of Economic
Theory, Volume 1, Issue 1, Pages 9-25.
[87] R.M. Thrall and W.F. Lucas (1963): n-Person Games in Partition Function Form.
Noval Research Logistics Quarterly 10, 281-298.
[88] S.H. Tijs and G.-J. Otten (1993): Compromise Values in Cooperative Game The-
ory. TOP 1, 1, 1-36.
[89] V.G. Vizing (1963): The Cartesian Product of Graphs. Vycisl.Syst. 9, 30-43,
[90] N.N. Vorob’ev (1975): Game Theory. 1st. Ed., Springer-Verlag.
[91] R.J. Weber (1988): Probabilistic Values for Games. In: A.E. Roth (ed.), The
Shapley Value, Cambrigde University Press, Cambridge, 101-120.
[92] P.M. Winkler (1987): Factoring a Graph in Polynomial Time. European J.Combin.
8, 209-212. |