Charro, Fernando ORCID: 0000-0002-3589-5786 and Parini, Enea (2010). Limits as p -> infinity of p-Laplacian problems with a superdiffusive power-type nonlinearity: Positive and sign-changing solutions. J. Math. Anal. Appl., 372 (2). S. 629 - 645. SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE. ISSN 1096-0813

Full text not available from this repository.

Abstract

We investigate the asymptotic behaviour as p -> infinity of sequences of solutions of the equation {-Delta(p)u = lambda vertical bar u vertical bar(q(p)-2)u in Omega, u = 0 on partial derivative Omega, where lambda > 0 and q(p) > p with lim(p ->infinity) q(p)/p = Q >= 1. We are interested in the characterization of such limits as viscosity solutions of a PDE problem. Both positive and sign-changing solutions are considered. (C) 2010 Elsevier Inc. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Charro, FernandoUNSPECIFIEDorcid.org/0000-0002-3589-5786UNSPECIFIED
Parini, EneaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-490618
DOI: 10.1016/j.jmaa.2010.07.005
Journal or Publication Title: J. Math. Anal. Appl.
Volume: 372
Number: 2
Page Range: S. 629 - 645
Date: 2010
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Place of Publication: SAN DIEGO
ISSN: 1096-0813
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
EIGENVALUE PROBLEM; UNIQUENESSMultiple languages
Mathematics, Applied; MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/49061

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item