Bras, Ana, Arizaga, Ana, Agirre, Uxue, Dorau, Marie, Houston, Judith, Radulescu, Aurel ORCID: 0000-0002-6050-0176, Kruteva, Margarita ORCID: 0000-0002-7686-0934, Pyckhout-Hintzen, Wim and Schmidt, Annette M. (2021). Chain-End Effects on Supramolecular Poly(ethylene glycol) Polymers. Polymers, 13 (14). BASEL: MDPI. ISSN 2073-4360

Full text not available from this repository.

Abstract

In this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As such bifunctional PEG with a molar mass below the entanglement mass M-e is symmetrically end-functionalized with three different hydrogen bonding (H-bonding) groups: thymine-1-acetic acid (thy), diamino-triazine (dat) and 2-ureido-4[1H]-pyrimidinone (upy). A linear block copolymer structure and a Newtonian-like dynamics is observed for PEG-thy/dat while results for PEG-upy structure and dynamics reveal a sphere and a network-like behavior, respectively. These observations are concomitant with an increase of the Flory-Huggins interaction parameter from PEG-thy/dat to PEG-upy that is used to quantify the difference between the H-bonding types. The upy association into spherical clusters is established by the Percus-Yevick approximation that models the inter-particle structure factor for PEG-upy. Moreover, the viscosity study reveals for PEG-upy a shear thickening behavior interpreted in terms of the free path model and related to the time for PEG-upy to dissociate from the upy clusters, seen as virtual crosslinks of the formed network. Moreover, a second relaxation time of different nature is also obtained from the complex shear modulus measurements of PEG-upy by the inverse of the angular frequency where G' and G'' crosses from the network-like to glass-like transition relaxation time, which is related to the segmental friction of PEG-upy polymeric network strands. In fact, not only do PEG-thy/dat and PEG-upy have different viscoelastic properties, but the relaxation times found for PEG-upy are much slower than the ones for PEG-thy/dat. However, the activation energy related to the association dynamics is very similar for both PEG-thy/dat and PEG-upy. Concerning the segmental dynamics, the glass transition temperature obtained from both rheological and calorimetric analysis is similar and increases for PEG-upy while for PEG-thy/dat is almost independent of association behavior. Our results show how supramolecular PEG properties vary by modifying the H-bonding association type and changing the molecular Flory-Huggins interaction parameter, which can be further explored for possible applications.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Bras, AnaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Arizaga, AnaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Agirre, UxueUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Dorau, MarieUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Houston, JudithUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Radulescu, AurelUNSPECIFIEDorcid.org/0000-0002-6050-0176UNSPECIFIED
Kruteva, MargaritaUNSPECIFIEDorcid.org/0000-0002-7686-0934UNSPECIFIED
Pyckhout-Hintzen, WimUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schmidt, Annette M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-576918
DOI: 10.3390/polym13142235
Journal or Publication Title: Polymers
Volume: 13
Number: 14
Date: 2021
Publisher: MDPI
Place of Publication: BASEL
ISSN: 2073-4360
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
TRANSIENT NETWORKS; THERMOPLASTIC ELASTOMERS; VISCOELASTIC PROPERTIES; TELECHELIC POLYMERS; NEUTRON-SCATTERING; PHASE-SEGREGATION; MOLECULAR-WEIGHT; RHEOLOGY; DYNAMICS; SHEARMultiple languages
Polymer ScienceMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/57691

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item