Mayer, Jan ORCID: 0000-0002-8781-5338, Boretzky, Konstanze, Douma, Christiaan, Hoemann, Elena and Zilges, Andreas ORCID: 0000-0002-9328-799X (2021). Classical and machine learning methods for event reconstruction in NeuLAND. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 1013. AMSTERDAM: ELSEVIER. ISSN 1872-9576
Full text not available from this repository.Abstract
NeuLAND, the New Large Area Neutron Detector, is a key component to investigate the origin of matter in the universe with experimental nuclear physics. It is a core component of the Reactions with Relativistic Radioactive Beams setup at the Facility for Antiproton and Ion Research, Germany. Neutrons emitted from these reactions create a wide range of patterns in NeuLAND. From these patterns, the number of neutrons (multiplicity) and their first interaction points must be reconstructed to determine the neutrons' four momenta. In this paper, we detail the challenges involved in this reconstruction and present a range of possible solutions. Scikit-Learn classification models and simple Keras-based neural networks were trained on a wide range of input-scaler combinations and compared to classical models. While the improvement in multiplicity reconstruction is limited due to the overlap between features, the machine learning methods achieve a significantly better first interaction point selection, which directly improves the resolution of physical quantities.
Item Type: | Journal Article | ||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-584345 | ||||||||||||||||||||||||
DOI: | 10.1016/j.nima.2021.165666 | ||||||||||||||||||||||||
Journal or Publication Title: | Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. | ||||||||||||||||||||||||
Volume: | 1013 | ||||||||||||||||||||||||
Date: | 2021 | ||||||||||||||||||||||||
Publisher: | ELSEVIER | ||||||||||||||||||||||||
Place of Publication: | AMSTERDAM | ||||||||||||||||||||||||
ISSN: | 1872-9576 | ||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/58434 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |