Penner, Alexander-Georg ORCID: 0000-0003-2868-6553, von Oppen, Felix, Zarand, Gergely and Zirnbauer, Martin R. (2021). Hilbert Space Geometry of Random Matrix Eigenstates. Phys. Rev. Lett., 126 (20). COLLEGE PK: AMER PHYSICAL SOC. ISSN 1079-7114
Full text not available from this repository.Abstract
The geometry of multiparameter families of quantum states is important in numerous contexts, including adiabatic or nonadiabatic quantum dynamics, quantum quenches, and the characterization of quantum critical points. Here, we discuss the Hilbert space geometry of eigenstates of parameter-dependent random matrix ensembles, deriving the full probability distribution of the quantum geometric tensor for the Gaussian unitary ensemble. Our analytical results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature. We discuss relations to Levy stable distributions and compare our results to numerical simulations of random matrix ensembles as well as electrons in a random magnetic field.
Item Type: | Journal Article | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-584926 | ||||||||||||||||||||
DOI: | 10.1103/PhysRevLett.126.200604 | ||||||||||||||||||||
Journal or Publication Title: | Phys. Rev. Lett. | ||||||||||||||||||||
Volume: | 126 | ||||||||||||||||||||
Number: | 20 | ||||||||||||||||||||
Date: | 2021 | ||||||||||||||||||||
Publisher: | AMER PHYSICAL SOC | ||||||||||||||||||||
Place of Publication: | COLLEGE PK | ||||||||||||||||||||
ISSN: | 1079-7114 | ||||||||||||||||||||
Language: | English | ||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/58492 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |