Kapovitch, Vitali, Lytchak, Alexander and Petrunin, Anton (2021). Metric-measure boundary and geodesic flow on Alexandrov spaces. J. Eur. Math. Soc., 23 (1). S. 29 - 63. BERLIN: EUROPEAN MATHEMATICAL SOC-EMS. ISSN 1435-9855

Full text not available from this repository.

Abstract

We relate the existence of many infinite geodesics on Alexandrov spaces to a statement about the average growth of volumes of balls. We deduce that the geodesic flow exists and preserves the Liouville measure in several important cases. The analytic tools we develop have close ties to integral geometry.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Kapovitch, VitaliUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lytchak, AlexanderUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Petrunin, AntonUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-586882
DOI: 10.4171/JEMS/1006
Journal or Publication Title: J. Eur. Math. Soc.
Volume: 23
Number: 1
Page Range: S. 29 - 63
Date: 2021
Publisher: EUROPEAN MATHEMATICAL SOC-EMS
Place of Publication: BERLIN
ISSN: 1435-9855
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
SCALAR CURVATUREMultiple languages
Mathematics, Applied; MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/58688

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item