References: |
Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers
TM, Oome S, Zhang H, Krol E, Grefen C, Gust AA, Chai J, Hedrich R, Van Den
Ackerveken G & Nürnberger T (2015) An RLP23-SOBIR1-BAK1 complex mediates
NLP-triggered immunity. Nat. Plants 1: 1–9
Anthony MA, Celenza JL, Armstrong A & Frey SD (2020) Indolic glucosinolate pathway
provides resistance to mycorrhizal fungal colonization in a non-host Brassicaceae.
Ecosphere 11:
Attard A, Gourgues M, Callemeyn-Torre N & Keller H (2010) The immediate activation of
defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora
parasitica infection. New Phytol. 187: 449–460
Baggs EL, Monroe JG, Thanki AS, O’Grady R, Schudoma C, Haerty W & Krasileva K V.
(2020) Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages
reveals coevolved components of plant immunity and drought response. Plant Cell 32:
2158–2177
Balzergue C, Puech-Pags V, Bécard G & Rochange SF (2011) The regulation of arbuscular
mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling
events. J. Exp. Bot. 62: 1049–1060 Available at: https://academic.oup.com/jxb/articlelookup/
doi/10.1093/jxb/erq335 [Accessed April 9, 2018]
Barragán-Rosillo AC, Peralta-Alvarez CA, Ojeda-Rivera JO, Arzate-Mejía RG, Recillas-
Targa F & Herrera-Estrella L (2021) Genome accessibility dynamics in response to
phosphate limitation is controlled by the PHR1 family of transcription factors in
Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 118:
Bennett AE & Groten K (2022) The Costs and Benefits of Plant-Arbuscular Mycorrhizal
Fungal Interactions. Annu. Rev. Plant Biol. 73: 649–672
Berens ML, Wolinska KW, Spaepen S, Ziegler J, Nobori T, Nair A, Krüler V, Winkelmüller
TM, Wang Y, Mine A, Becker D, Garrido-Oter R, Schulze-Lefert P & Tsuda K (2019)
Balancing trade-offs between biotic and abiotic stress responses through leaf agedependent
variation in stress hormone cross-talk. Proc. Natl. Acad. Sci. U. S. A. 116:
2364–2373
Bhandari DD, Lapin D, Kracher B, von Born P, Bautor J, Niefind K & Parker JE (2019) An
EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes
in Arabidopsis. Nat. Commun. 10: 772 Available at:
http://www.nature.com/articles/s41467-019-08783-0 [Accessed May 6, 2019]
Bolger AM, Lohse M & Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina
sequence data. Bioinformatics 30: 2114–2120
Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D & Glawischnig E (2009) The
multifunctional enzyme CYP71b15 (Phytoalexin deficient3) converts cysteine-lndole-3-
acetonitrile to camalexin in the lndole-3-acetonitrile metabolic network of arabidopsis
thaliana. Plant Cell 21: 1830–1845
Bozkurt TO & Kamoun S (2020) The plant–pathogen haustorial interface at a glance. J. Cell
Sci. 133: jcs237958 Available at: http://jcs.biologists.org/lookup/doi/10.1242/jcs.237958
Bravo A, York T, Pumplin N, Mueller LA & Harrison MJ (2016) Genes conserved for
arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat. Plants 2:
15208 Available at: http://www.nature.com/articles/nplants2015208 [Accessed May 26,
2018]
Brundrett MC & Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and
global host plant diversity. New Phytol. Available at:
http://doi.wiley.com/10.1111/nph.14976
Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A &
Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation
and repression responses to phosphate starvation in arabidopsis. PLoS Genet. 6:
Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A & Stacey G (2014)
The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced
complex with related kinase CERK1. Elife 3: 1–19
Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, Finkel OM,
Breakfield NW, Mieczkowski P, Jones CD, Paz-Ares J & Dangl JL (2017) Root
microbiota drive direct integration of phosphate stress and immunity. Nature 543: 513–
518 Available at: https://doi.org/10.1038/nature21417
Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu
TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Scholkopf B, Nordborg M, Ratsch
G, Ecker JR & Weigel D (2007) Common Sequence Polymorphisms Shaping Genetic
Diversity in Arabidopsis thaliana. Science (80-. ). 317: 338–342 Available at:
http://science.sciencemag.org/content/317/5836/338.abstract
Clay NK, Adio AM, Denoux C, Jander G & Ausubel FM (2009) Glucosinolate Metabolites
Required for an Arabidopsis Innate Immune Response. Science (80-. ). 323: 95–101
Available at: https://www.science.org/doi/10.1126/science.1164627
Cui H, Tsuda K & Parker JE (2015) Effector-Triggered Immunity: From Pathogen Perception
to Robust Defense. Annu. Rev. Plant Biol. 66: 487–511 Available at:
http://www.annualreviews.org/doi/10.1146/annurev-arplant-050213-040012 [Accessed
October 16, 2018]
Das D, Paries M, Hobecker K, Gigl M, Dawid C, Lam H-M, Zhang J, Chen M & Gutjahr C
(2022) PHOSPHATE STARVATION RESPONSE transcription factors enable
arbuscular mycorrhiza symbiosis. Nat. Commun. 13: 477 Available at:
https://www.nature.com/articles/s41467-022-27976-8
Delaux P-M, Radhakrishnan G V., Jayaraman D, Cheema J, Malbreil M, Volkening JD,
Sekimoto H, Nishiyama T, Melkonian M, Pokorny L, Rothfels CJ, Sederoff HW,
Stevenson DW, Surek B, Zhang Y, Sussman MR, Dunand C, Morris RJ, Roux C, Wong
GK-S, et al (2015) Algal ancestor of land plants was preadapted for symbiosis. Proc.
Natl. Acad. Sci. 112: 13390–13395 Available at:
http://www.pnas.org/lookup/doi/10.1073/pnas.1515426112
Deslandes L & Rivas S (2012) Catch me if you can: bacterial effectors and plant targets.
Trends Plant Sci. 17: 644–655 Available at:
https://www.sciencedirect.com/science/article/pii/S1360138512001495?via%3Dihub#fig
0005 [Accessed May 9, 2019]
Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P & Hacquard S
(2018) Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell
175: 973–983.e14 Available at: http://www.ncbi.nlm.nih.gov/pubmed/30388454
[Accessed November 7, 2018]
Emonet A, Zhou F, Vacheron J, Heiman CM, Dénervaud Tendon V, Ma KW, Schulze-Lefert
P, Keel C & Geldner N (2021) Spatially Restricted Immune Responses Are Required for
Maintaining Root Meristematic Activity upon Detection of Bacteria. Curr. Biol. 31:
1012–1028.e7
Feng F, Sun J, Radhakrishnan G V., Lee T, Bozsóki Z, Fort S, Gavrin A, Gysel K, Thygesen
MB, Andersen KR, Radutoiu S, Stougaard J & Oldroyd GED (2019) A combination of
chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular
mycorrhizal associations in Medicago truncatula. Nat. Commun. 10: 5047 Available at:
http://www.nature.com/articles/s41467-019-12999-5 [Accessed November 23, 2019]
Frerigmann H, Piotrowski M, Lemke R, Bednarek P & Schulze-Lefert P (2021) A network of
phosphate starvation and immune-related signaling and metabolic pathways controls the
interaction between arabidopsis thaliana and the beneficial fungus colletotrichum
tofieldiae. Mol. Plant-Microbe Interact. 34: 560–570
Frerigmann H, Piślewska-Bednarek M, Sánchez-Vallet A, Molina A, Glawischnig E,
Gigolashvili T & Bednarek P (2016) Regulation of Pathogen-Triggered Tryptophan
Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole
Glucosinolate Conversion Products. Mol. Plant 9: 682–695
Gan T, Luo T, Pang K, Zhou C, Zhou G, Wan B, Li G, Yi Q, Czaja AD & Xiao S (2021)
Cryptic terrestrial fungus-like fossils of the early Ediacaran Period. Nat. Commun. 12:
Available at: http://dx.doi.org/10.1038/s41467-021-20975-1
Gao M, Zhang C, Angel W, Kwak O, Allison J, Wiratan L, Hallworth A, Wolf J & Lu H
(2022) Circadian Regulation of the GLYCINE-RICH RNA-BINDING PROTEIN Gene
by the Master Clock Protein CIRCADIAN CLOCK-ASSOCIATED 1 Is Important for
Plant Innate Immunity . J. Exp. Bot.: 1–13
Gao YQ, Bu LH, Han ML, Wang YL, Li ZY, Liu HT & Chao DY (2021) Long-distance blue
light signalling regulates phosphate deficiency-induced primary root growth inhibition.
Mol. Plant 14: 1539–1553 Available at: https://doi.org/10.1016/j.molp.2021.06.002
Grigoriev I V., Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X,
Korzeniewski F, Smirnova T, Nordberg H, Dubchak I & Shabalov I (2014) MycoCosm
portal: Gearing up for 1000 fungal genomes. Nucleic Acids Res. 42: 699–704
Gu Z, Eils R & Schlesner M (2016) Complex heatmaps reveal patterns and correlations in
multidimensional genomic data. Bioinformatics 32: 2847–2849
Guan R, Su J, Meng X, Li S, Liu Y, Xu J & Zhang S (2015) Multilayered regulation of
ethylene induction plays a positive role in arabidopsis resistance against Pseudomonas
syringae. Plant Physiol. 169: 299–312
Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà AD, Kopriva S, Voges
MJEEE, Sattely ES, Garrido-Oter R & Schulze-Lefert P (2020) Root-Secreted
Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell
Host Microbe 28: 825–837.e6 Available at:
https://linkinghub.elsevier.com/retrieve/pii/S1931312820305072
Harun S, Abdullah-Zawawi MR, Goh HH & Mohamed-Hussein ZA (2020) A Comprehensive
Gene Inventory for Glucosinolate Biosynthetic Pathway in Arabidopsis thaliana. J.
Agric. Food Chem. 68: 7281–7297
Hassani MA, Durán P & Hacquard S (2018) Microbial interactions within the plant holobiont.
Microbiome 6: 58 Available at:
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0445-0
[Accessed August 13, 2018]
Van Der Heijden MGA, Bruin S De, Luckerhoff L, Van Logtestijn RSP & Schlaeppi K
(2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant
nutrition and seedling recruitment. ISME J. 10: 389–399 Available at:
http://dx.doi.org/10.1038/ismej.2015.120
Hindt MN, Akmakjian GZ, Pivarski KL, Punshon T, Baxter I, Salt DE & Guerinot M Lou
(2017) BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important
negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics
9: 876–890
Hiruma K, Fukunaga S, Bednarek P, Piślewska-Bednarek M, Watanabe S, Narusaka Y,
Shirasu K & Takano Y (2013) Glutathione and tryptophan metabolism are required for
Arabidopsis immunity during the hypersensitive response to hemibiotrophs. Proc. Natl.
Acad. Sci. U. S. A. 110: 9589–9594
Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U,
Ramírez D, Bucher M, O’Connell RJ & Schulze-Lefert P (2016) Root Endophyte
Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status
Dependent. Cell 165: 464–474 Available at:
http://www.ncbi.nlm.nih.gov/pubmed/26997485 [Accessed May 26, 2018]
Hu D, Zhang S, Baskin JM, Baskin CC, Wang Z, Liu R, Du J, Yang X & Huang Z (2019)
Seed mucilage interacts with soil microbial community and physiochemical processes to
affect seedling emergence on desert sand dunes. Plant Cell Environ. 42: 591–605
Ivanov S, Austin J, Berg RH & Harrison MJ (2019) Extensive membrane systems at the host–
arbuscular mycorrhizal fungus interface. Nat. Plants 5: 194–203 Available at:
http://www.nature.com/articles/s41477-019-0364-5
Jang G, Yoon Y & Choi Y Do (2020) Crosstalk with jasmonic acid integrates multiple
responses in plant development. Int. J. Mol. Sci. 21: 1–15
Kadota Y, Liebrand TWH, Goto Y, Sklenar J, Derbyshire P, Menke FLH, Torres MA, Molina
A, Zipfel C, Coaker G & Shirasu K (2019) Quantitative phosphoproteomic analysis
reveals common regulatory mechanisms between effector- and PAMP-triggered
immunity in plants. New Phytol. 221: 2160–2175 Available at:
https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.15523 [Accessed April 29, 2019]
Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M & Giller KE (2009) Are the rates of
photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular
mycorrhizal symbioses? Soil Biol. Biochem. 41: 1233–1244 Available at:
http://dx.doi.org/10.1016/j.soilbio.2009.03.005
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR,
Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J
& Bücking H (2011) Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal
Symbiosis. Science (80-. ). 333: 880–882 Available at:
https://doi.org/10.1126/science.1208473
Kim D, Paggi JM, Park C, Bennett C & Salzberg SL (2019) Graph-based genome alignment
and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37: 907–915
Available at: http://dx.doi.org/10.1038/s41587-019-0201-4
Klein M, Reichelt M, Gershenzon J & Papenbrock J (2006) The three desulfoglucosinolate
sulfotransferase proteins in Arabidopsis have different substrate specificities and are
differentially expressed. FEBS J. 273: 122–136
Kliebenstein DJ, D’Auria JC, Behere AS, Kim JH, Gunderson KL, Breen JN, Lee G,
Gershenzon J, Last RL & Jander G (2007) Characterization of seed-specific
benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J. 51: 1062–1076
Koh S, André A, Edwards H, Ehrhardt D & Somerville S (2005) Arabidopsis thaliana
subcellular responses to compatible Erysiphe cichoracearum infections. Plant J. 44:
516–529
Kremer JM, Sohrabi R, Paasch BC, Rhodes D, Thireault C, Schulze-Lefert P, Tiedje JM & He
SY (2021) Peat-based gnotobiotic plant growth systems for Arabidopsis microbiome
research. Nat. Protoc. 16: 2450–2470 Available at: http://dx.doi.org/10.1038/s41596-
021-00504-6
Krings M, Taylor TN, Hass H, Kerp H, Dotzler N & Hermsen EJ (2007) Fungal endophytes
in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host
responses. New Phytol. 174: 648–657 Available at: http://doi.wiley.com/10.1111/j.1469-
8137.2007.02008.x
Kuchernig JC, Burow M & Wittstock U (2012) Evolution of specifier proteins in
glucosinolate-containing plants. BMC Evol. Biol. 12:
Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR, Döhlemann S, von Wirén N,
Parniske M & Zuccaro A (2013) Host-related metabolic cues affect colonization
strategies of a root endophyte. Proc. Natl. Acad. Sci. 110: 13965–13970 Available at:
http://www.ncbi.nlm.nih.gov/pubmed/23918389 [Accessed October 16, 2018]
Lahrmann U, Strehmel N, Langen G, Frerigmann H, Leson L, Ding Y, Scheel D, Herklotz S,
Hilbert M & Zuccaro A (2015) Mutualistic root endophytism is not associated with the
reduction of saprotrophic traits and requires a noncompromised plant innate immunity.
New Phytol. 207: 841–857 Available at: http://doi.wiley.com/10.1111/nph.13411
[Accessed October 16, 2018]
Leek JT, Johnson WE, Parker HS, Jaffe AE & Storey JD (2012) The SVA package for
removing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics 28: 882–883
Li C, Zhang Q, Xia Y & Jin K (2021) MaNmra, a negative transcription regulator in nitrogen
catabolite repression pathway, contributes to nutrient utilization, stress resistance, and
virulence in entomopathogenic fungus metarhizium acridum. Biology (Basel). 10: 1167
Available at: https://www.mdpi.com/2079-7737/10/11/1167
Liang Y, Cao Y, Tanaka K, Thibivilliers S, Wan J, Choi J, Kang C ho, Qiu J & Stacey G
(2013) Nonlegumes respond to rhizobial nod factors by suppressing the innate immune
response. Science (80-. ). 341: 1384–1387 Available at:
http://www.ncbi.nlm.nih.gov/pubmed/24009356 [Accessed February 27, 2019]
Liao Y, Smyth GK & Shi W (2014) FeatureCounts: An efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics 30: 923–930
Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl
S, Scheel D, Llorente F, Molina A, Parker J, Somerville S & Schulze-Lefert P (2005)
Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis.
Science 310: 1180–3 Available at: http://www.ncbi.nlm.nih.gov/pubmed/16293760
[Accessed February 13, 2019]
Liu L, Sonbol FM, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He SY & Dong X (2016)
Salicylic acid receptors activate jasmonic acid signalling through a non-canonical
pathway to promote effector-triggered immunity. Nat. Commun. 7: 1–10 Available at:
http://dx.doi.org/10.1038/ncomms13099
Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan G, Wang J, Jin C, Chang J, Zhou JM & Chai J
(2012) Chitin-induced dimerization activates a plant immune receptor. Science (80-. ).
336: 1160–1164
Love MI, Huber W & Anders S (2014) Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biol. 15: 1–21
Lu Y & Tsuda K (2021) Intimate Association of PRR- and NLR-Mediated Signaling in Plant
Immunity. Mol. Plant. Microbe. Interact. 34: 3–14
Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan G V., Breakspear A,
Oldroyd GED & Eastmond P (2017) Fatty acids in arbuscular mycorrhizal fungi are
synthesized by the host plant. Science (80-. ). 356: 1175–1176
Luginbuehl LH & Oldroyd GED (2017) Understanding the Arbuscule at the Heart of
Endomycorrhizal Symbioses in Plants. Curr. Biol. 27: R952–R963 Available at:
http://dx.doi.org/10.1016/j.cub.2017.06.042
Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition:
Tools for future crops. Plant Physiol. 156: 1041–1049
Ma L, Shi Y, Siemianowski O, Yuan B, Egner TK, Mirnezami SV, Lind KR,
Ganapathysubramanian B, Venditti V & Cademartiri L (2019) Hydrogel-based
transparent soils for root phenotyping in vivo. Proc. Natl. Acad. Sci. U. S. A. 166:
11063–11068
Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML & Hedin LO
(2018) Evolutionary history resolves global organization of root functional traits. Nature
555: 94–97 Available at: http://www.nature.com/doifinder/10.1038/nature25783
[Accessed January 31, 2019]
Maciá-Vicente JG, Bai B, Qi R, Ploch S, Breider F & Thines M (2022) Nutrient Availability
Does Not Affect Community Assembly in Root-Associated Fungi but Determines
Fungal Effects on Plant Growth. mSystems 7:
Meier K, Ehbrecht MD & Wittstock U (2019) Glucosinolate Content in Dormant and
Germinating Arabidopsis thaliana Seeds Is Affected by Non-Functional Alleles of
Classical Myrosinase and Nitrile-Specifier Protein Genes. Front. Plant Sci. 10: 1–14
Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG & Dolan L
(2007) An Ancient Mechanism Controls the Development of Cells with a Rooting
Function in Land Plants. Science (80-. ). 316: 1477–1480 Available at:
http://www.ncbi.nlm.nih.gov/pubmed/17556585 [Accessed December 8, 2017]
Meschke H & Schrempf H (2010) Streptomyces lividans inhibits the proliferation of the
fungus Verticillium dahliae on seeds and roots of Arabidopsis thaliana. Microb.
Biotechnol. 3: 428–443
Mesny F, Miyauchi S, Thiergart T, Pickel B, Atanasova L, Karlsson M, Hüttel B, Barry KW,
Haridas S, Chen C, Bauer D, Andreopoulos W, Pangilinan J, LaButti K, Riley R, Lipzen
A, Clum A, Drula E, Henrissat B, Kohler A, et al (2021) Genetic determinants of
endophytism in the Arabidopsis root mycobiome. Nat. Commun. 12: 1–15
Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D & Ausubel
FM (2010) Innate Immune Responses Activated in Arabidopsis Roots by Microbe97
PhD dissertation C. Uhlmann
Associated Molecular Patterns. Plant Cell 22: 973–990 Available at:
https://academic.oup.com/plcell/article/22/3/973/6096733
Mithen R, Bennett R & Marquez J (2010) Glucosinolate biochemical diversity and innovation
in the Brassicales. Phytochemistry 71: 2074–2086 Available at:
http://dx.doi.org/10.1016/j.phytochem.2010.09.017
Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N,
Kaku H & Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin
elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. 104: 19613–19618 Available at:
http://www.ncbi.nlm.nih.gov/pubmed/18042724 [Accessed January 22, 2019]
Newman A, Picot E, Davies S, Hilton S, Carré IA & Bending GD (2022) Circadian rhythms
in the plant host influence rhythmicity of rhizosphere microbiota. BMC Biol. 20: 1–15
Available at: https://doi.org/10.1186/s12915-022-01430-z
Ngou BPM, Ahn HK, Ding P & Jones JDG (2021) Mutual potentiation of plant immunity by
cell-surface and intracellular receptors. Nature 592: 110–115
Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas
FB, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson PKI,
Janitza P, Kern R, Heyl A, Rümpler F, Villalobos LIAC, Clay JM, Skokan R, et al
(2018) The Chara Genome: Secondary Complexity and Implications for Plant
Terrestrialization. Cell 174: 448–464.e24 Available at:
https://linkinghub.elsevier.com/retrieve/pii/S0092867418308018
Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA & Oelmüller R (2012)
Indole-3-Acetaldoxime-Derived Compounds Restrict Root Colonization in the Beneficial
Interaction Between Arabidopsis Roots and the Endophyte Piriformospora indica. Mol.
Plant-Microbe Interact. 25: 1186–1197 Available at:
http://apsjournals.apsnet.org/doi/10.1094/MPMI-03-12-0071-R [Accessed February 7,
2019]
O’Connell RJ & Panstruga R (2006) Tête à tête inside a plant cell: Establishing compatibility
between plants and biotrophic fungi and oomycetes. New Phytol. 171: 699–718
Oba H, Tawaray K & Wagatsuma T (2001) Arbuscular mycorrhizal colonization in Lupinus
and related genera. Soil Sci. Plant Nutr. 47: 685–694 Available at:
http://www.tandfonline.com/doi/abs/10.1080/00380768.2001.10408433 [Accessed May
26, 2018]
Pant B-D, Pant P, Erban A, Huhman D, Kopka J & Scheible W-R (2015) Identification of
primary and secondary metabolites with phosphorus status-dependent abundance in
Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic
changes during phosphorus limitation. Plant. Cell Environ. 38: 172–87 Available at:
https://onlinelibrary.wiley.com/doi/10.1111/pce.12378
Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev
Micro 6: 763–775 Available at:
https://www.nature.com/nrmicro/journal/v6/n10/full/nrmicro1987.html [Accessed May
22, 2017]
Peng J, Aluthmuhandiram JVS, Chethana KWT, Zhang Q, Xing Q, Wang H, Liu M, Zhang
W, Li X & Yan J (2022) An NmrA-Like Protein, Lws1, Is Important for Pathogenesis in
the Woody Plant Pathogen Lasiodiplodia theobromae. Plants 11: 2197 Available at:
https://www.mdpi.com/2223-7747/11/17/2197
Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S
& Kahmann R (2015) Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol.
66: 513–545 Available at: http://www.annualreviews.org/doi/10.1146/annurev-arplant-
043014-114623
Proust H, Honkanen S, Jones VAS, Morieri G, Prescott H, Kelly S, Ishizaki K, Kohchi T &
Dolan L (2016) RSL Class i Genes Controlled the Development of Epidermal Structures
in the Common Ancestor of Land Plants. Curr. Biol. 26: 93–99 Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0960982215014360 [Accessed December 8,
2017]
Pruitt RN, Locci F, Wanke F, Zhang L, Saile SC, Joe A, Karelina D, Hua C, Fröhlich K, Wan
WL, Hu M, Rao S, Stolze SC, Harzen A, Gust AA, Harter K, Joosten MHAJ, Thomma
BPHJ, Zhou JM, Dangl JL, et al (2021) The EDS1–PAD4–ADR1 node mediates
Arabidopsis pattern-triggered immunity. Nature 598: 495–499
Qin L, Zhou Z, Li Q, Zhai C, Liu L, Quilichini TD, Gao P, Kessler SA, Jaillais Y, Datla R,
Peng G, Xiang D & Wei Y (2020) Specific recruitment of phosphoinositide species to
the plant-pathogen interfacial membrane underlies Arabidopsis susceptibility to fungal
infection. Plant Cell 32: 1665–1688
Rajniak J, Barco B, Clay NK & Sattely ES (2015) A new cyanogenic metabolite in
Arabidopsis required for inducible pathogen defence. Nature 525: 376–379
Redecker D (2000) Glomalean Fungi from the Ordovician. Science (80-. ). 289: 1920–1921
Available at: https://www.sciencemag.org/lookup/doi/10.1126/science.289.5486.1920
Redkar A, Gimenez Ibanez S, Sabale M, Zechmann B, Solano R & Di Pietro A (2022a)
Marchantia polymorpha model reveals conserved infection mechanisms in the vascular
wilt fungal pathogen Fusarium oxysporum. New Phytol. 234: 227–241
Redkar A, Sabale M, Schudoma C, Zechmann B, Gupta YK, López-Berges MS, Venturini G,
Gimenez-Ibanez S, Turrà D, Solano R & Di Pietro A (2022b) Conserved secreted
effectors contribute to endophytic growth and multihost plant compatibility in a vascular
wilt fungus. Plant Cell 34: 3214–3232
Rellán-Álvarez R, Lobet G & Dinneny JR (2016) Environmental Control of Root System
Biology. Annu. Rev. Plant Biol. 67: 619–642
Remy W, Taylor TN, Hass H & Kerp H (1994) Four hundred-million-year-old vesicular
arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91: 11841–11843 Available at:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC45331/ [Accessed March 12, 2017]
Retallack GJ (1992) Chapter 21 - Paleozoic paleosols. In Weathering, Soils & Paleosols,
Martini IP & Chesworth WBT-D in ESP (eds) pp 543–564. Elsevier Available at:
https://www.sciencedirect.com/science/article/pii/B978044489198350026X
Rich MK, Vigneron N, Liboure C, Keller J, Xue L, Hajheidari M, Radhakrishnan G V., Le Ru
A, Diop SI, Potente G, Conti E, Duijsings D, Batut A, Le Faouder P, Kodama K,
Kyozuka J, Sallet E, Bécard G, Rodriguez-Franco M, Ott T, et al (2021) Lipid exchanges
drove the evolution of mutualism during plant terrestrialization. Science (80-. ). 372:
864–868
Rico-Reséndiz F, Cervantes-Pérez SA, Espinal-Centeno A, Dipp-Álvarez M, Oropeza-Aburto
A, Hurtado-Bautista E, Cruz-Hernández A, Bowman JL, Ishizaki K, Arteaga-Vázquez
MA, Herrera-Estrella L & Cruz-Ramírez A (2020) Transcriptional and morphophysiological
responses of Marchantia polymorpha upon phosphate starvation. Int. J.
Mol. Sci. 21: 1–25
Rohart F, Gautier B, Singh A & Lê Cao KA (2017) mixOmics: An R package for ‘omics
feature selection and multiple data integration. PLoS Comput. Biol. 13: 1–19
Ross A, Yamada K, Hiruma K, Yamashita-Yamada M, Lu X, Takano Y, Tsuda K & Saijo Y
(2014) The Arabidopsis PEPR pathway couples local and systemic plant immunity.
EMBO J. 33: 62–75
Rouached H, Arpat AB & Poirier Y (2010) Regulation of phosphate starvation responses in
plants: Signaling players and cross-talks. Mol. Plant 3: 288–299 Available at:
http://dx.doi.org/10.1093/mp/ssp120
Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tör
M, de Vries S & Zipfel C (2011) The Arabidopsis leucine-rich repeat receptor-like
kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to
hemibiotrophic and biotrophic pathogens. Plant Cell 23: 2440–2455
Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A & Paz-Ares J (2001) A
conserved MYB transcription factor involved in phosphate starvation signaling both in
vascular plants and in unicellular algae. Genes Dev. 15: 2122–2133
Rush TA, Puech-Pagès V, Bascaules A, Jargeat P, Maillet F, Haouy A, Maës AQM, Carriel
CC, Khokhani D, Keller-Pearson M, Tannous J, Cope KR, Garcia K, Maeda J, Johnson
C, Kleven B, Choudhury QJ, Labbé J, Swift C, O’Malley MA, et al (2020) Lipochitooligosaccharides
as regulatory signals of fungal growth and development. Nat.
Commun. 11: Available at: http://dx.doi.org/10.1038/s41467-020-17615-5
Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, Jones A & Zipfel C (2011)
Phosphorylation-dependent differential regulation of plant growth, cell death, and innate
immunity by the regulatory receptor-like kinase BAK1. PLoS Genet. 7: e1002046
Available at: http://dx.plos.org/10.1371/journal.pgen.1002046 [Accessed January 21,
2019]
Singh A, Sharma A, Singh N & Nandi AK (2022) MTO1-RESPONDING DOWN 1 (MRD1)
is a transcriptional target of OZF1 for promoting salicylic acid-mediated defense in
Arabidopsis. Plant Cell Rep. 41: 1319–1328 Available at:
https://doi.org/10.1007/s00299-022-02861-2
Somssich M, Khan GA & Persson S (2016) Cell Wall Heterogeneity in Root Development of
Arabidopsis. Front. Plant Sci. 7: 1242 Available at:
http://journal.frontiersin.org/Article/10.3389/fpls.2016.01242/abstract [Accessed
November 24, 2017]
Sønderby IE, Burow M, Rowe HC, Kliebenstein DJ & Halkier BA (2010) A complex
interplay of three R2R3 MYB transcription factors determines the profile of aliphatic
glucosinolates in Arabidopsis. Plant Physiol. 153: 348–363
Sun J, Miller JB, Granqvist E, Wiley-Kalil A, Gobbato E, Maillet F, Cottaz S, Samain E,
Venkateshwaran M, Fort S, Morris RJ, Ané JM, Dénarié J & Oldroyd GED (2015)
Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice.
Plant Cell 27: 823–838
Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing
N, dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R,
Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, et al (2013) Genome of
an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc
Natl Acad Sci U S A 110: 20117–20122 Available at:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864322/ [Accessed March 12, 2017]
Touw AJ, Verdecia Mogena A, Maedicke A, Sontowski R, van Dam NM & Tsunoda T
(2020) Both Biosynthesis and Transport Are Involved in Glucosinolate Accumulation
During Root-Herbivory in Brassica rapa. Front. Plant Sci. 10: 1–13
Tsuda K, Sato M, Stoddard T, Glazebrook J & Katagiri F (2009) Network properties of robust
immunity in plants. PLoS Genet. 5: e1000772 Available at:
https://dx.plos.org/10.1371/journal.pgen.1000772 [Accessed February 25, 2019]
Tsuji J, Jackson EP, Gage DA, Hammerschmidt R & Somerville SC (1992) Phytoalexin
accumulation in arabidopsis thaliana during the hypersensitive reaction to Pseudomonas
syringae pv syringae. Plant Physiol. 98: 1304–1309
Val-Torregrosa B, Bundó M, Chiou T-J, Flors V & Segundo BS (2021) NITROGEN
LIMITATION ADAPTATION functions as a negative regulator of Arabidopsis
immunity. Available at: https://doi.org/10.1101/2021.12.09.471910
Wang B, Li K, Wu G, Xu Z, Hou R, Guo B, Zhao Y & Liu F (2022) Sulforaphane, a
secondary metabolite in crucifers, inhibits the oxidative stress adaptation and virulence
of Xanthomonas by directly targeting OxyR. Mol. Plant Pathol. 23: 1508–1523
Wang W, Yang J, Zhang J, Liu YX, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W, Miao P,
Li L, Zhang X, Chu J, Zuo J, Li J, Bai Y, Lei X & Zhou JM (2020) An Arabidopsis
Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion
System to Inhibit Bacterial Virulence. Cell Host Microbe 27: 601–613.e7 Available at:
https://doi.org/10.1016/j.chom.2020.03.004
Wilson MH, Holman TJ, Sørensen I, Cancho-Sanchez E, Wells DM, Swarup R, Knox JP,
Willats WGT, Ubeda-Tomás S, Holdsworth M, Bennett MJ, Vissenberg K & Hodgman
TC (2015) Multi-omics analysis identifies genes mediating the extension of cell walls in
the Arabidopsis thaliana root elongation zone. Front. Cell Dev. Biol. 3: 1–12
Wittstock U & Burow M (2010) Glucosinolate Breakdown in Arabidopsis: Mechanism,
Regulation and Biological Significance. Arab. B. 8: e0134
Wittstock U & Gershenzon J (2002) Constitutive plant toxins and their role in defense against
herbivores and pathogens. Curr. Opin. Plant Biol. 5: 300–307
Wolinska KW, Vannier N, Thiergart T, Pickel B, Gremmen S, Piasecka A, Piślewska-
Bednarek M, Nakano RT, Belkhadir Y, Bednarek P & Hacquard S (2021) Tryptophan
metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots.
Proc. Natl. Acad. Sci. U. S. A. 118:
Yamada K, Yamashita‐Yamada M, Hirase T, Fujiwara T, Tsuda K, Hiruma K & Saijo Y
(2016) Danger peptide receptor signaling in plants ensures basal immunity upon
pathogen‐induced depletion of BAK 1 . EMBO J. 35: 46–61
Yamaguchi Y, Huffaker A, Bryan AC, Tax FE & Ryan CA (2010) PEPR2 is a second
receptor for the Pep1 and Pep2 peptides and contributes to defense responses in
Arabidopsis. Plant Cell 22: 508–22 Available at:
http://www.ncbi.nlm.nih.gov/pubmed/20179141 [Accessed February 19, 2019]
Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, Zhang X, Deichmann M, Frey FP,
Bresgen V, Li C, Razavi BS, Schaaf G, von Wirén N, Su Z, Bucher M, Tsuda K,
Goormachtig S, Chen X & Hochholdinger F (2021) Plant flavones enrich rhizosphere
Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants
7: 481–499 Available at: http://dx.doi.org/10.1038/s41477-021-00897-y
Zhang B, Wang M, Sun Y, Zhao P, Liu C, Qing K, Hu X, Zhong Z, Cheng J, Wang H, Peng
Y, Shi J, Zhuang L, Du S, He M, Wu H, Liu M, Chen S, Wang H, Chen X, et al (2021)
Glycine max NNL1 restricts symbiotic compatibility with widely distributed
bradyrhizobia via root hair infection. Nat. Plants 7: 73–86
Zhang Y & Li X (2019) Salicylic acid: biosynthesis, perception, and contributions to plant
immunity. Curr. Opin. Plant Biol. 50: 29–36 Available at:
https://doi.org/10.1016/j.pbi.2019.02.004
Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J & Celenza
JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: Involvement of cytochrome
P450s CYP79B2 and CYP79B3. Genes Dev. 16: 3100–3112
Zhou F, Emonet A, Dénervaud Tendon V, Marhavy P, Wu D, Lahaye T & Geldner N (2020)
Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses
in Roots. Cell 180: 440–453.e18 Available at:
https://linkinghub.elsevier.com/retrieve/pii/S009286742030060X
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C & Chanda
SK (2019a) Metascape provides a biologist-oriented resource for the analysis of systemslevel
datasets. Nat. Commun. 10: Available at: http://dx.doi.org/10.1038/s41467-019-
09234-6
Zhou Z, Zhao Y, Bi G, Liang X & Zhou JM (2019b) Early signalling mechanisms underlying
receptor kinase-mediated immunity in plants. Philos. Trans. R. Soc. B Biol. Sci. 374:
Zhu A, Ibrahim JG & Love MI (2019) Heavy-Tailed prior distributions for sequence count
data: Removing the noise and preserving large differences. Bioinformatics 35: 2084–
2092
Zipfel C & Oldroyd GED (2017) Plant signalling in symbiosis and immunity. Nature 543:
328–336 Available at: http://www.nature.com/articles/nature22009 [Accessed February
27, 2019]
Zönnchen J, Gantner J, Lapin D, Barthel K, Eschen‐Lippold L, Erickson JL, Landeo
Villanueva S, Zantop S, Kretschmer C, Joosten MHAJ, Parker JE, Guerois R &
Stuttmann J (2022) EDS1 complexes are not required for PRR responses and execute
TNL‐ETI from the nucleus in Nicotiana benthamiana . New Phytol.: 2249–2264 |