Bridges, Walter ORCID: 0000-0002-3967-7620, Franke, Johann and Garnowski, Taylor (2022). Asymptotics for the twisted eta-product and applications to sign changes in partitions. Res. Math. Sci., 9 (4). CHAM: SPRINGER INT PUBL AG. ISSN 2197-9847

Full text not available from this repository.

Abstract

We prove asymptotic formulas for the complex coefficients of (zeta q; q)(infinity)(-1), where zeta is a root of unity, and apply our results to determine secondary terms in the asymptotics for p(a, b, n), the number of integer partitions of n with number of parts congruent a modulo b. Our results imply that, as n -> infinity, the difference p(a(1), b, n) - p(a(2), b, n) for a(1) not equal a(2) oscillates like a cosine when renormalized by elementary functions. Moreover, we give asymptotic formulas for arbitrary linear combinations of {p(a, b, n)}(1 <= a <= b).

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Bridges, WalterUNSPECIFIEDorcid.org/0000-0002-3967-7620UNSPECIFIED
Franke, JohannUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Garnowski, TaylorUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-658486
DOI: 10.1007/s40687-022-00355-x
Journal or Publication Title: Res. Math. Sci.
Volume: 9
Number: 4
Date: 2022
Publisher: SPRINGER INT PUBL AG
Place of Publication: CHAM
ISSN: 2197-9847
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/65848

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item