Castro-silva, Davi, De Oliveira Filho, Fernando Mario, Slot, Lucas ORCID: 0000-0003-3790-492X and Vallentin, Frank ORCID: 0000-0002-3205-4607 (2022). A RECURSIVE LOVASZ THETA NUMBER FOR SIMPLEX-AVOIDING SETS. Proc. Amer. Math. Soc., 150 (8). S. 3307 - 3323. PROVIDENCE: AMER MATHEMATICAL SOC. ISSN 1088-6826

Full text not available from this repository.

Abstract

We recursively extend the Lovasz theta number to geometric hypergraphs on the unit sphere and on Euclidean space, obtaining an upper bound for the independence ratio of these hypergraphs. As an application we reprove a result in Euclidean Ramsey theory in the measurable setting, namely that every k-simplex is exponentially Ramsey, and we improve existing bounds for the base of the exponential.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Castro-silva, DaviUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
De Oliveira Filho, Fernando MarioUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Slot, LucasUNSPECIFIEDorcid.org/0000-0003-3790-492XUNSPECIFIED
Vallentin, FrankUNSPECIFIEDorcid.org/0000-0002-3205-4607UNSPECIFIED
URN: urn:nbn:de:hbz:38-670495
DOI: 10.1090/proc/15940
Journal or Publication Title: Proc. Amer. Math. Soc.
Volume: 150
Number: 8
Page Range: S. 3307 - 3323
Date: 2022
Publisher: AMER MATHEMATICAL SOC
Place of Publication: PROVIDENCE
ISSN: 1088-6826
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
UPPER-BOUNDS; SUBSETSMultiple languages
Mathematics, Applied; MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/67049

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item