Layer, Moritz, Senk, Johanna, Essink, Simon, van Meegen, Alexander, Bos, Hannah and Helias, Moritz (2022). NNMT: Mean-Field Based Analysis Tools for Neuronal Network Models. Front. Neuroinformatics, 16. LAUSANNE: FRONTIERS MEDIA SA. ISSN 1662-5196
Full text not available from this repository.Abstract
Mean-field theory of neuronal networks has led to numerous advances in our analytical and intuitive understanding of their dynamics during the past decades. In order to make mean-field based analysis tools more accessible, we implemented an extensible, easy-to-use open-source Python toolbox that collects a variety of mean-field methods for the leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox (NNMT) in its current state allows for estimating properties of large neuronal networks, such as firing rates, power spectra, and dynamical stability in mean-field and linear response approximation, without running simulations. In this article, we describe how the toolbox is implemented, show how it is used to reproduce results of previous studies, and discuss different use-cases, such as parameter space explorations, or mapping different network models. Although the initial version of the toolbox focuses on methods for leaky integrate-and-fire neurons, its structure is designed to be open and extensible. It aims to provide a platform for collecting analytical methods for neuronal network model analysis, such that the neuroscientific community can take maximal advantage of them.
Item Type: | Journal Article | ||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-675547 | ||||||||||||||||||||||||||||
DOI: | 10.3389/fninf.2022.835657 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Front. Neuroinformatics | ||||||||||||||||||||||||||||
Volume: | 16 | ||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||
Publisher: | FRONTIERS MEDIA SA | ||||||||||||||||||||||||||||
Place of Publication: | LAUSANNE | ||||||||||||||||||||||||||||
ISSN: | 1662-5196 | ||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/67554 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |