Gorjao, Leonardo Rydin, Hassan, Galib, Kurths, Juergen and Witthaut, Dirk ORCID: 0000-0002-3623-5341 (2022). MFDFA: Efficient multifractal detrended fluctuation analysis in python. Comput. Phys. Commun., 273. AMSTERDAM: ELSEVIER. ISSN 1879-2944
Full text not available from this repository.Abstract
Multifractal detrended fluctuation analysis (MFDFA) has become a central method to characterise the variability and uncertainty in empiric time series. Extracting the fluctuations on different temporal scales allows quantifying the strength and correlations in the underlying stochastic properties, their scaling behaviour, as well as the level of fractality. Several extensions to the fundamental method have been developed over the years, vastly enhancing the applicability of MFDFA, e.g. empirical mode decomposition for the study of long-range correlations and persistence. In this article we introduce an efficient, easy-to-use python library for MFDFA, incorporating the most common extensions and harnessing the most of multi-threaded processing for very fast calculations. (C) 2021 Elsevier B.V. All rights reserved.
Item Type: | Journal Article | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-683615 | ||||||||||||||||||||
DOI: | 10.1016/j.cpc.2021.108254 | ||||||||||||||||||||
Journal or Publication Title: | Comput. Phys. Commun. | ||||||||||||||||||||
Volume: | 273 | ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Publisher: | ELSEVIER | ||||||||||||||||||||
Place of Publication: | AMSTERDAM | ||||||||||||||||||||
ISSN: | 1879-2944 | ||||||||||||||||||||
Language: | English | ||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/68361 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |