Cherif, Yassine, Azzi, Hajer, Sridharan, Kishore ORCID: 0000-0002-2099-2962, Ji, Seulgi, Choi, Heechae, Allan, Michael G., Benaissa, Sihem, Saidi-Bendahou, Karima, Damptey, Lois, Ribeiro, Camila Silva, Krishnamurthy, Satheesh, Nagarajan, Sanjay, Maroto-Valer, M. Mercedes, Kuehnel, Moritz F. ORCID: 0000-0001-8678-3779 and Pitchaimuthu, Sudhagar . Facile Synthesis of Gram-Scale Mesoporous Ag/TiO2 Photocatalysts for Pharmaceutical Water Pollutant Removal and Green Hydrogen Generation. ACS Omega. WASHINGTON: AMER CHEMICAL SOC. ISSN 2470-1343

Full text not available from this repository.

Abstract

This work demonstrates a two-step gram-scale synthesis of presynthesized silver (Ag) nanoparticles impregnated with mesoporous TiO2 and evaluates their feasibility for wastewater treatment and hydrogen gas generation under natural sunlight. Paracetamol was chosen as the model pharmaceutical pollutant for evaluating photocatalytic performance. A systematic material analysis (morphology, chemical environment, optical bandgap energy) of the Ag/TiO2 photocatalyst powder was carried out, and the influence of material properties on the performance is discussed in detail. The experimental results showed that the decoration of anatase TiO2 nanoparticles (size between 80 and 100 nm) with 5 nm Ag nanoparticles (1 wt %) induced visible-light absorption and enhanced charge carrier separation. As a result, 0.01 g/L Ag/TiO2 effectively removed 99% of 0.01 g/L paracetamol in 120 min and exhibited 60% higher photocatalytic removal than pristine TiO2. Alongside paracetamol degradation, Ag/TiO2 led to the generation of 1729 smol H2 g-1 h-1. This proof-of-concept approach for tandem pollutant degradation and hydrogen generation was further evaluated with rare earth metal (lanthanum)-and nonmetal (nitrogen)-doped TiO2, which also showed a positive response. Using a combination of ab initio calculations and our new theory model, we revealed that the enhanced photocatalytic performance of Ag/TiO2 was due to the surface Fermi-level change of TiO2 and lowered surface reaction energy barrier for water pollutant oxidation. This work opens new opportunities for exploiting tandem photocatalytic routes beyond water splitting and understanding the simultaneous reactions in metal-doped metal oxide photocatalyst systems under natural sunlight.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Cherif, YassineUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Azzi, HajerUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sridharan, KishoreUNSPECIFIEDorcid.org/0000-0002-2099-2962UNSPECIFIED
Ji, SeulgiUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Choi, HeechaeUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Allan, Michael G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Benaissa, SihemUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Saidi-Bendahou, KarimaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Damptey, LoisUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ribeiro, Camila SilvaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Krishnamurthy, SatheeshUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Nagarajan, SanjayUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Maroto-Valer, M. MercedesUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kuehnel, Moritz F.UNSPECIFIEDorcid.org/0000-0001-8678-3779UNSPECIFIED
Pitchaimuthu, SudhagarUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-690712
DOI: 10.1021/acsomega.2c06657
Journal or Publication Title: ACS Omega
Publisher: AMER CHEMICAL SOC
Place of Publication: WASHINGTON
ISSN: 2470-1343
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; DOPED TIO2; WASTE-WATER; H-2 EVOLUTION; SURFACE-AREA; ANATASE TIO2; DEGRADATION; OXIDATION; NANOPARTICLESMultiple languages
Chemistry, MultidisciplinaryMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/69071

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item