Antonucci, Linda A. ORCID: 0000-0002-7919-7402, Penzel, Nora, Sanfelici, Rachele, Pigoni, Alessandro ORCID: 0000-0002-9122-5656, Kambeitz-Ilankovic, Lana ORCID: 0000-0002-8218-0425, Dwyer, Dominic ORCID: 0000-0003-3949-5867, Ruef, Anne, Sen Dong, Mark, Ozturk, Omer Faruk ORCID: 0000-0003-3665-0526, Chisholm, Katharine ORCID: 0000-0002-0575-0789, Haidl, Theresa, Rosen, Marlene, Ferro, Adele, Pergola, Giulio, Andriola, Ileana, Blasi, Giuseppe, Ruhrmann, Stephan ORCID: 0000-0002-6022-2364, Schultze-Lutter, Frauke, Falkai, Peter, Kambeitz, Joseph, Lencer, Rebekka, Dannlowski, Udo, Upthegrove, Rachel ORCID: 0000-0001-8204-5103, Salokangas, Raimo K. R., Pantelis, Christos ORCID: 0000-0002-9565-0238, Meisenzahl, Eva, Wood, Stephen J., Brambilla, Paolo, Borgwardt, Stefan ORCID: 0000-0002-5792-3987, Bertolino, Alessandro and Koutsouleris, Nikolaos (2022). Using combined environmental-clinical classification models to predict role functioning outcome in clinical high-risk states for psychosis and recent-onset depression. Br. J. Psychiatry, 220 (4). S. 229 - 246. CAMBRIDGE: CAMBRIDGE UNIV PRESS. ISSN 1472-1465

Full text not available from this repository.

Abstract

Background Clinical high-risk states for psychosis (CHR) are associated with functional impairments and depressive disorders. A previous PRONIA study predicted social functioning in CHR and recent-onset depression (ROD) based on structural magnetic resonance imaging (sMRI) and clinical data. However, the combination of these domains did not lead to accurate role functioning prediction, calling for the investigation of additional risk dimensions. Role functioning may be more strongly associated with environmental adverse events than social functioning. Aims We aimed to predict role functioning in CHR, ROD and transdiagnostically, by adding environmental adverse events-related variables to clinical and sMRI data domains within the PRONIA sample. Method Baseline clinical, environmental and sMRI data collected in 92 CHR and 95 ROD samples were trained to predict lower versus higher follow-up role functioning, using support vector classification and mixed k-fold/leave-site-out cross-validation. We built separate predictions for each domain, created multimodal predictions and validated them in independent cohorts (74 CHR, 66 ROD). Results Models combining clinical and environmental data predicted role outcome in discovery and replication samples of CHR (balanced accuracies: 65.4% and 67.7%, respectively), ROD (balanced accuracies: 58.9% and 62.5%, respectively), and transdiagnostically (balanced accuracies: 62.4% and 68.2%, respectively). The most reliable environmental features for role outcome prediction were adult environmental adjustment, childhood trauma in CHR and childhood environmental adjustment in ROD. Conclusions Findings support the hypothesis that environmental variables inform role outcome prediction, highlight the existence of both transdiagnostic and syndrome-specific predictive environmental adverse events, and emphasise the importance of implementing real-world models by measuring multiple risk dimensions.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Antonucci, Linda A.UNSPECIFIEDorcid.org/0000-0002-7919-7402UNSPECIFIED
Penzel, NoraUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sanfelici, RacheleUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Pigoni, AlessandroUNSPECIFIEDorcid.org/0000-0002-9122-5656UNSPECIFIED
Kambeitz-Ilankovic, LanaUNSPECIFIEDorcid.org/0000-0002-8218-0425UNSPECIFIED
Dwyer, DominicUNSPECIFIEDorcid.org/0000-0003-3949-5867UNSPECIFIED
Ruef, AnneUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sen Dong, MarkUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ozturk, Omer FarukUNSPECIFIEDorcid.org/0000-0003-3665-0526UNSPECIFIED
Chisholm, KatharineUNSPECIFIEDorcid.org/0000-0002-0575-0789UNSPECIFIED
Haidl, TheresaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Rosen, MarleneUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ferro, AdeleUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Pergola, GiulioUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Andriola, IleanaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Blasi, GiuseppeUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ruhrmann, StephanUNSPECIFIEDorcid.org/0000-0002-6022-2364UNSPECIFIED
Schultze-Lutter, FraukeUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Falkai, PeterUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kambeitz, JosephUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lencer, RebekkaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Dannlowski, UdoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Upthegrove, RachelUNSPECIFIEDorcid.org/0000-0001-8204-5103UNSPECIFIED
Salokangas, Raimo K. R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Pantelis, ChristosUNSPECIFIEDorcid.org/0000-0002-9565-0238UNSPECIFIED
Meisenzahl, EvaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wood, Stephen J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Brambilla, PaoloUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Borgwardt, StefanUNSPECIFIEDorcid.org/0000-0002-5792-3987UNSPECIFIED
Bertolino, AlessandroUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Koutsouleris, NikolaosUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-696035
DOI: 10.1192/bjp.2022.16
Journal or Publication Title: Br. J. Psychiatry
Volume: 220
Number: 4
Page Range: S. 229 - 246
Date: 2022
Publisher: CAMBRIDGE UNIV PRESS
Place of Publication: CAMBRIDGE
ISSN: 1472-1465
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
MACHINE-LEARNING ALGORITHM; QUALITY-OF-LIFE; PSYCHOMETRIC PROPERTIES; CHILDHOOD TRAUMA; INDIVIDUALS; ADVERSITY; SCHIZOPHRENIA; PERSISTENCE; VALIDATION; CALCULATORMultiple languages
PsychiatryMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/69603

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item