Schleifenbaum, Julia Katharina / J.K. ORCID: 0000-0001-7204-3235 (2024). Onkologische Ergebnisse der Radiotherapie bei Patientinnen und Patienten mit lokal rezidivierten und fernmetastasierten Kopf-Hals-Tumoren- Unizentrische, retrospektive Analyse. PhD thesis, Universität zu Köln.

[img] PDF
Doktorarbeit_Julia Schleifenbaum_230423_JS.pdf

Download (5MB)

Abstract

Name: Julia Katharina Schleifenbaum Titel: Onkologische Ergebnisse der Radiotherapie bei Patientinnen und Patienten mit lokal rezidivierten und fernmetastasierten Kopf-Hals-Tumoren- Unizentrische, retrospektive Analyse Promoviert am 28.02.2023 Keywords: Radiotherapie, Kopf-Hals Tumoren Ziel dieser unizentrisch retrospektiven Arbeit waren Charakterisierung und Outcome-Analyse von 180 Patient:innen mit rezidivierten und metastasierten Kopf-und-Hals Tumoren (RMKHT), die an der Uniklinik Köln von 2010 bis 2018 eine Radiotherapie erhielten. Endpunkte waren Gesamtüberleben (OS), Progressionsfreies Überleben (PFS) und Nebenwirkungen. Wir führten Analysen für RMKHT (n=180), reine Lokalrezidive (LR-KHT n=112, ohne Stereotaxie) und fernmetastasierte Tumore (FM-KHT n=67) durch. Wichtige Untergruppen waren Radiotherapie (RT n=90), Radiochemotherapie (RCT n=69), Radioimmuntherapie (RIT n=21), lokal erst-bestrahlte (Erst-RT n=69) und wiederbestrahlte (Re-RT n=43) Patient:innen. Es erfolgte ein Vergleich mit Patient:innen der Klinik für Hals-, Nasen-, & Ohrenheilkunde, Uniklinik Köln, die eine Kombination aus Cisplatin, 5-Fluoruracil und Cetuximab (Extreme n=27) erhielten. Auswertung erfolgte mittels SPSS 27.0. Überlebensanalysen erfolgten nach Kaplan-Meier und Cox Regression. Limitationen der Studie ergeben sich aus dem retrospektiven Studiendesign. Bestrahlungen erfolgten nach 3D-konformaler- (3D-CRT), Intensitäts-modulierter- (IMRT), Volumetric modulated Arc- (VMAT) Technik und Stereotaxie. OS und PFS von Patient:innen mit RMKHT ist begrenzt (12 und 7 Monate) und für RIT am kürzesten (8 Monate). RCT war Extreme für FM-KHT in OS und PFS nicht überlegen. RT, RCT, RIT, Extreme waren in vielen Nebenwirkungen vergleichbar, Zahnschäden und Xerostomie traten etwas häufiger bei RIT auf. Übelkeit betraf Extreme-Patient:innen signifikant häufiger. RCT-Patient:innen litten seltener an Fatigue und Blutungen. Fibrosierung trat bei Re- RT häufiger als bei Erst-RT. OS für Erst-RT war mit 23 zu 12 Monaten fast doppelt so lang wie für Re-RT. Ein Einflussfaktor waren signifikant weniger Salvage Operationen bei Re-RT. Re- RT Patient:innen lebten kürzer als Erst-RT Patient:innen, wenn sie im Rezidiv eine RT oder RCT erhielten (RT 9 vs. 27 Monate, RCT 12 vs. 27 Monate), bei kleiner n-Zahl zeigte sich für RIT kein relevanter Unterschied. Lokale Re-RT erfolgte mit geringerer Dosis und kleinerem Volumen als Erst-RT. Hohe Strahlendosis verbesserte OS, wobei Dosen ≥ 60 Gy OS nicht weiter verlängerten. Strahlendosen von 50-55 Gy könnten somit ausreichen, vergleichbares Outcome zu höherer Dosis zu erzielen. Signifikant negativ prognostisch im multivariaten Modell waren: Anlage einer perkutan endoskopischen Gastrostomie-Sonde (PEG) und niedriger Hämoglobin-Spiegel für OS, PEG-Sonde für OS bei LR-KHT und PEG-Sonde sowie Frührezidive für PFS bei LR-KHT. Weitere potenziell prognostische Faktoren in univariater Analyse waren hoher hsGPS, niedriges Albumin und hohes C-reaktives Protein (CRP)/Albumin Ratio. Mit dieser Studie gelang es, RMKHT-Patient:innen der Uniklinik Köln erstmals zu charakterisieren, in einen Gesamtkontext zu setzen und Einflussfaktoren auf Outcome zu diskutieren. Damit leistet diese Arbeit einen wichtigen Schritt zum besseren Verständnis dieser Kohorte und zukünftigen Weiterentwicklung von Therapiemöglichkeiten.

Item Type: Thesis (PhD thesis)
Translated title:
TitleLanguage
Oncological results of radiotherapy in patients with locally recurrent and distant metastatic head and neck tumors - Unicentric, retrospective analysisEnglish
Translated abstract:
AbstractLanguage
Name: Julia Katharina Schleifenbaum Title: Oncological Results of Radiotherapy in Patients with Locally Recurrent and Distant Metastatic Head and Neck Tumors - Unicentric, Retrospective Analysis PhD awarded on February 28, 2023 Keywords: Radiotherapy, Head and Neck Tumors The aim of this single-center retrospective study was the characterization and outcome analysis of 180 patients with recurrent and metastatic head and neck tumors (RMHNT) who underwent radiotherapy at the University Hospital Cologne from 2010 to 2018. Endpoints were overall survival (OS), progression-free survival (PFS), and side effects. Analyses were conducted for RMHNT (n=180), pure local recurrences (LR-HNT n=112, without stereotactic radiotherapy), and distant metastatic tumors (DM-HNT n=67). Important subgroups included radiotherapy (RT n=90), radiochemotherapy (RCT n=69), radioimmunotherapy (RIT n=21), locally first-irradiated (First-RT n=69), and re-irradiated (Re-RT n=43) patients. A comparison was made with patients from the Department of Otorhinolaryngology, University Hospital Cologne, who received a combination of cisplatin, 5-fluorouracil, and cetuximab (Extreme n=27). Data analysis was performed using SPSS 27.0. Survival analyses were conducted using Kaplan-Meier and Cox regression. Limitations of the study arise from the retrospective study design. Irradiations were performed using 3D conformal (3D-CRT), intensity-modulated (IMRT), volumetric modulated arc (VMAT) techniques, and stereotactic radiotherapy. OS and PFS for patients with RMHNT are limited (12 and 7 months, respectively), and shortest for RIT (8 months). RCT was not superior to Extreme for DM-HNT in terms of OS and PFS. RT, RCT, RIT, and Extreme were comparable in many side effects, with dental damage and xerostomia occurring slightly more frequently with RIT. Nausea affected Extreme patients significantly more frequently. RCT patients suffered less from fatigue and bleeding. Fibrosis occurred more frequently with Re-RT than with First-RT. OS for First-RT was nearly double that of Re-RT (23 vs. 12 months). A significant factor was significantly fewer salvage operations with Re-RT. Re-RT patients lived shorter than First-RT patients if they received RT or RCT in recurrence (RT 9 vs. 27 months, RCT 12 vs. 27 months), with a small sample size showing no relevant difference for RIT. Local Re-RT was performed with lower dose and smaller volume than First-RT. High radiation dose improved OS, with doses ≥ 60 Gy not further extending OS. Radiation doses of 50-55 Gy may be sufficient to achieve comparable outcomes to higher doses. Significant negative prognostic factors in the multivariate model were: placement of percutaneous endoscopic gastrostomy tube (PEG) and low hemoglobin level for OS, PEG tube for OS in LR-HNT, and PEG tube and early recurrences for PFS in LR-HNT. Other potentially prognostic factors in univariate analysis were high hsGPS, low albumin, and high C-reactive protein (CRP)/albumin ratio. With this study, it was possible to characterize RMHNT patients at the University Hospital Cologne for the first time, place them in an overall context, and discuss factors influencing outcome. Thus, this work represents an important step towards better understanding of this cohort and the future development of therapeutic options.English
Creators:
CreatorsEmailORCIDORCID Put Code
Schleifenbaum, Julia Katharina / J.K.julia.schleifenbaum@gmx.deorcid.org/0000-0001-7204-3235UNSPECIFIED
URN: urn:nbn:de:hbz:38-721471
Date: 2024
Place of Publication: Kölner UniversitätsPublikationsServer
Language: German
Faculty: Faculty of Medicine
Divisions: Faculty of Medicine > Strahlentherapie > Klinik und Poliklinik für Strahlentherapie
Subjects: Medical sciences Medicine
Uncontrolled Keywords:
KeywordsLanguage
RadiotherapieGerman
Kopf-Hals TumorenGerman
Date of oral exam: 28 February 2023
Referee:
NameAcademic Title
Marnitz-Schulze, SimoneProfessor Dr. med.
Grosheva, Maria V.Professor Dr. med.
References: 1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018. DOI:10.3322/caac.21492. 2 Krebs in Deutschland für 2017/2018. 13. Ausgabe. Robert Koch-Institut (Hrsg) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (Hrsg). Berlin, 2021. 2021. DOI:10.25646/8353. 3 Bayer O, Krüger M, Koutsimpelas D, et al. Changes in Incidence and Mortality Trends of Head and Neck Cancer in Rhineland-Palatinate, 2000-2009 [Ver{ä}nderung von Inzidenz und Mortalit{ä}t von Kopf-Hals-Malignomen in Rheinland-Pfalz, 2000-2009]. Laryngorhinootologie 2015; 94: 451–8. 4 Ferlay J, Ervik M, Lam F, et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. 2020. https://gco.iarc.fr/today. 5 Kaatsch P, Spix C. Krebs in Deutschland für 2015 / 2016. Robert Koch Inst 2019. 6 Gillison ML. Evidence for a Causal Association Between Human Papillomavirus and a Subset of Head and Neck Cancers. J Natl Cancer Inst 2000; 92: 709–20. 7 Brooks L, Yao QY, Rickinson AB, Young LS. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol 1992; 66: 2689–97. 8 Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol 2010; 11: 781–9. 9 States U, Dyne EA Van, Henley SJ, et al. Trends in Human Papillomavirus – Associated Cancers —. 2018; 67: 1999–2015. 10 D’Souza G, McNeel TS, Fakhry C. Understanding personal risk of oropharyngeal cancer: Risk-groups for oncogenic oral HPV infection and oropharyngeal cancer. Ann Oncol 2017; 28: 3065–9. 11 Ferlay J, Ervik M, Lam F. Global Cancer Observatory: cancer today. Lyon, France: International Agency for Research on Cancer 2018. Int Agency Res Cancer 2019; : 1– 2. 12 Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet 2019; 394: 64–80. 13 Adelstein DJ, Li Y, Adams GL, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol 2003; 21: 92–8. 14 Forastiere AA, Zhang Q, Weber RS, et al. Long-term results of RTOG 91-11: A comparison of three nonsurgical treatment strategies to preserve the larynx in patients with locally advanced larynx cancer. J Clin Oncol 2013; 31: 845–52. 15 Denis F, Garaud P, Bardet E, et al. Final results of the 94-01 French head and neck oncology and radiotherapy group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. J Clin Oncol 2004; 22: 69–76. 16 Rivera F, García-Castaño A, Vega N, Vega-Villegas ME, Gutiérrez-Sanz L. Cetuximab in metastatic or recurrent head and neck cancer: The EXTREME trial. Expert Rev Anticancer Ther 2009; 9: 1421–8. 17 Adelstein D, Gillison ML, Pfister DG, et al. NCCN Guidelines Insights: Head and Neck Cancers, Version 2.2017. J Natl Compr Canc Netw 2017; 15: 761–70. 18 Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck 2005; 27: 843–50. 19 Lavaf A, Genden EM, Cesaretti JA, Packer S, Kao J. Adjuvant radiotherapy improves overall survival for patients with lymph node-positive head and neck squamous cell carcinoma. Cancer 2008; 112: 535–43. 20 Trifiletti DM, Smith A, Mitra N, et al. Beyond positive margins and extracapsular extension: Evaluating the utilization and clinical impact of postoperative chemoradiotherapy in resected locally advanced head and neck cancer. J Clin Oncol 2017; 35: 1550–60. 21 Blanchard P, Baujat B, Holostenco V, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): A comprehensive analysis by tumour site. Radiother Oncol 2011; 100: 33–40. 22 DGZMK. S3-Leitlinie: Mundhöhlenkarzinom, Diagnostik und Therapie. Awmf 2012; : 1– 119. 23 Vokes EE, Weichselbaum RR, Lippman SM, Hong WK. Head and Neck Cancer. N Engl J Med 1993; 328: 184–94. 24 Pantel M, Guntinas-Lichius O. Larynxkarzinom: Epidemiologie, Risikofaktoren und Überleben. HNO 2012; 60: 32–40. 25 Leitlinienprogramm Onkologie. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Diagnostik, Therapie und Nachsorge des Larynxkarzinoms, Langversion 1.1, 2019, AWMF-Registernummer: 017/076OL. Awmf 2019; : 1–147. 26 Guzzo M, Locati LD, Prott FJ, Gatta G, McGurk M, Licitra L. Major and minor salivary gland tumors. Crit Rev Oncol Hematol 2010; 74: 134–48. 27 Wyss A, Hashibe M, Chuang SC, et al. Cigarette, cigar, and pipe smoking and the risk of head and neck cancers: Pooled analysis in the international head and neck cancer epidemiology consortium. Am J Epidemiol 2013; 178: 679–90. 28 Rodriguez T, Altieri A, Chatenoud L, et al. Risk factors for oral and pharyngeal cancer in young adults. Oral Oncol 2004; 40: 207–13. 29 Talamini R, Bosetti C, La Vecchia C, et al. Combined effect of tobacco and alcohol on laryngeal cancer risk: A case-control study. Cancer Causes Control 2002; 13: 957–64. 30 Harris CC, Hollstein M. Clinical Implications of the p53 Tumor-Suppressor Gene. N Engl J Med 1993; 329: 1318–27. 31 Brennan JA, Boyle JO, Koch WM, et al. Association between Cigarette Smoking and Mutation of the p53 Gene in Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med 1995; 332: 712–7. 32 Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144: 646–74. 33 Saraiya M, Unger ER, Thompson TD, et al. US assessment of HPV Types in cancers: Implications for current and 9-valent HPV vaccines. J Natl Cancer Inst 2015; 107: 1–12. 34 Gillison ML, D’Souza G, Westra W, et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst 2008; 100: 407–20. 35 Lo KW, Chung GTY, To KF. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol 2012; 22: 79– 86. 36 Edge SB, Compton CC. The american joint committee on cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 2010; 17: 1471– 4. 37 O’Sullivan B, Huang SH, Su J, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol 2016; 17: 440–51. 38 Doescher J, Veit JA, Hoffmann TK. Die 8. Ausgabe der TNM-Klassifikation: Neuerungen für das Fachgebiet Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie. HNO 2017; 65: 956–61. 39 NCCN. National Comprehensive Cancer Network. (2020). Head and neck cancer (version 1.2020). 2020. https://www.nccn.org/professionals/physician_gls/pdf/headand- neck.pdf. 40 Deschler DG, Moore MG, Smith R V. TNM Staging of Head and Neck Cancer and Neck Dissection Classification. 2014 DOI:RC280.N35P63 2008. 41 Grégoire V, Ang K, Budach W, et al. Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol 2014; 110: 172–81. 42 Andersen PE, Shah JP, Cambronero E, Spiro RH. The role of comprehensive neck dissection with preservation of the spinal accessory nerve in the clinically positive neck. Am J Surg 1994; 168: 499–502. 43 Duprez F, Berwouts D, Neve W De, et al. Distant metastases in head and neck cancer. Head Neck 2017. DOI:10.1002/HED. 44 Warren S, Ehrenreich T. Multiple Primary Malignant Tumors and Susceptibility to Cancer. Cancer Res 1944; 4: 554–70. 45 Slaughter DP, Southwick HW, Smejkal W. “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer 1953; 6: 963– 8. 46 Baxi SS, Pinheiro LC, Patil SM, Pfister DG, Oeffinger KC, Elkin EB. Causes of death in long-term survivors of head and neck cancer. Cancer 2014; 120: 1507–13. 47 Negri E, Vecchia C La, Franceschi S, Tavani A. Attributable Risk for Oral Cancer in Northern Italy. Cancer Epidemiol Biomarkers Prev 1993; 2: 189–93. 48 Wienecke A, Barnes B, Neuhauser H, Kraywinkel K. Incident cancers attributable to alcohol consumption in Germany, 2010. Cancer Causes Control 2015; 26: 903–11. 49 RKI-Ratgeber Humane Papillomviren. 2018. www.rki.de/epidbull. 50 Chan KCA, Woo JKS, King A, et al. Analysis of plasma Epstein–Barr virus DNA to screen for nasopharyngeal cancer. N Engl J Med 2017; 377: 513–22. 51 Grégoire V, Evans M, Le QT, et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncolog. Radiother Oncol 2018; 126: 3–24. 52 Lee AW, Ng WT, Pan JJ, et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol 2018; 126: 25– 36. 53 Biau J, Lapeyre M, Troussier I, et al. Selection of lymph node target volumes for definitive head and neck radiation therapy: a 2019 Update. Radiother Oncol 2019; 134: 1–9. 54 Vergeer MR, Doornaert PAH, Jonkman A, et al. Ipsilateral irradiation for oral and oropharyngeal carcinoma treated with primary surgery and postoperative radiotherapy. Int J Radiat Oncol Biol Phys 2010; 78: 682–8. 55 Alterio D, Marvaso G, Ferrari A, Volpe S, Orecchia R, Jereczek-Fossa BA. Modern radiotherapy for head and neck cancer. Semin Oncol 2019; 46: 233–45. 56 DEGRO. Deutsche Gesellschaft für Radioonkologie e.V. Leitlinie zur Strahlentherapie mit fluenzmodulierten Feldern (IMRT). 2018; : 1–23. 57 Nutting CM, Morden JP, Harrington KJ, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): A phase 3 multicentre randomised controlled trial. Lancet Oncol 2011; 12: 127–36. 58 Eisbruch A, Ten Haken RK, Kim HM, Marsh LH, Ship JA. Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys 1999; 45: 577–87. 59 Zhang B, Mo Z, Du W, Wang Y, Liu L, Wei Y. Intensity-modulated radiation therapy versus 2D-RT or 3D-CRT for the treatment of nasopharyngeal carcinoma: A systematic review and meta-analysis. Oral Oncol 2015; 51: 1041–6. 60 Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008; 35: 310–7. 61 Verbakel WFAR, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S. Volumetric Intensity-Modulated Arc Therapy Vs. Conventional IMRT in Head-and-Neck Cancer: A Comparative Planning and Dosimetric Study. Int J Radiat Oncol Biol Phys 2009; 74: 252–9. 62 Sulman EP, Schwartz DL, Le TT, et al. IMRT Reirradiation of Head and Neck Cancer- Disease Control and Morbidity Outcomes. Int J Radiat Oncol Biol Phys 2009; 73: 399– 409. 63 Nacional Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) v5.0. 2017. https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5 _Quick_Reference_8.5x11.pdf. 64 Bjordal K, Kaasa S, Mastekaasa A. Quality of life in patients treated for head and neck cancer: A follow-up study 7 to 11 years after radiotherapy. Int J Radiat Oncol Biol Phys 1994; 28: 847–56. 65 Gupta T, Kannan S, Ghosh-Laskar S, Agarwal JP. Systematic review and metaanalyses of intensity-modulated radiation therapy versus conventional two-dimensional and/or or three-dimensional radiotherapy in curative-intent management of head and neck squamous cell carcinoma. PLoS One 2018; 13: 1–15. 66 Eisbruch A, Kim HM, Terrell JE, Marsh LH, Dawson LA, Ship JA. Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys 2001; 50: 695–704. 67 Elting LS, Cooksley CD, Chambers MS, Garden AS. Risk, Outcomes, and Costs of Radiation-Induced Oral Mucositis Among Patients With Head-and-Neck Malignancies. Int J Radiat Oncol Biol Phys 2007; 68: 1110–20. 68 Trotti A, Bellm LA, Epstein JB, et al. Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: A systematic literature review. Radiother Oncol 2003; 66: 253–62. 69 Nguyen-Tan PF, Zhang Q, Ang KK, et al. Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the radiation therapy oncology group 0129 trial: Long-term report of efficacy and toxicity. J Clin Oncol 2014; 32: 3858–67. 70 Yamashita H, Nakagawa K, Tago M, et al. Taste dysfunction in patients receiving radiotherapy. Head Neck 2006; 28: 508–16. 71 Hovan AJ, Williams PM, Stevenson-Moore P, et al. A systematic review of dysgeusia induced by cancer therapies. Support Care Cancer 2010; 18: 1081–7. 72 Yamashita H, Nakagawa K, Nakamura N, et al. Relation between acute and late irradiation impairment of four basic tastes and irradiated tongue volume in patients with head-and-neck cancer. Int J Radiat Oncol Biol Phys 2006; 66: 1422–9. 73 Tomita Y, Osaki T. Gustatory impairment and salivary gland pathophysiology in relation to oral cancer treatment. Int J Oral Maxillofac Surg 1990; 19: 299–304. 74 Marx RE, Johnson RP, Kline SN. Prevention of osteoradionecrosis: a randomized prospective clinical trial of hyperbaric oxygen versus penicillin. J Am Dent Assoc 1985; 111: 49–54. 75 Maes A, Huygh I, Weltens C, et al. De Gustibus: Time scale of loss and recovery of tastes caused by radiotherapy. Radiother Oncol 2002; 63: 195–201. 76 Hickok JT, Morrow GR, Roscoe JA, Mustian K, Okunieff P. Occurrence, severity, and longitudinal course of twelve common symptoms in 1129 consecutive patients during radiotherapy for cancer. J Pain Symptom Manage 2005; 30: 433–42. 77 Archambeau JO, Pezner R, Wasserman T. Pathophysiology of irradiated skin and breast. Int J Radiat Oncol Biol Phys 1995; 31: 1171–85. 78 Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med 2006; 354: 567–78. 79 McDonald MW, Moore MG, Johnstone PAS. Risk of carotid blowout after reirradiation of the head and neck: A systematic review. Int J Radiat Oncol Biol Phys 2012; 82: 1083– 9. 80 Marx RE. A New Concept of Its Pathophysiology. Growth (Lakeland) 1983; 41: 283–8. 81 Chang DT, Sandow PR, Morris CG, et al. Do pre-irradiation dental extractions reduce the risk of osteoradionecrosis of the mandible? Head Neck 2007; 29: 528–36. 82 Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 2008; 100: 261–9. 83 Yoo J, Lacchetti C, Hammond JA, Gilbert RW. Role of endolaryngeal surgery (with or without laser) versus radiotherapy in the management of early (T1) glottic cancer: A systematic review. Head Neck 2014; 36: 1807–19. 84 Guimarães AV, Dedivitis RA, Matos LL, Aires FT, Cernea CR. Comparison between transoral laser surgery and radiotherapy in the treatment of early glottic cancer: A systematic review and meta-analysis. Sci Rep 2018; 8: 1–7. 85 Mo HL, Li J, Yang X, et al. Transoral laser microsurgery versus radiotherapy for T1 glottic carcinoma: a systematic review and meta-analysis. Lasers Med Sci 2017; 32: 461–7. 86 Moore EJ, Janus J, Kasperbauer J. Transoral robotic surgery of the oropharynx: Clinical and anatomic considerations. Clin Anat 2012; 25: 135–41. 87 Weiss BG, Ihler F, Wolff HA, et al. Transoral laser microsurgery for treatment for hypopharyngeal cancer in 211 patients. Head Neck 2017; 39: 1631–8. 88 D’Cruz AK, Vaish R, Kapre N, et al. Elective versus therapeutic neck dissection in nodenegative oral cancer. N Engl J Med 2015; 373: 521–9. 89 Colevas AD, Yom SS, Pfister DG, et al. NCCN guidelines ® insights: Head and neck cancers, version 1.2018 featured updates to the NCCN guidelines. JNCCN J Natl Compr Cancer Netw 2018; 16: 479–90. 90 Lee AWM, Sze WM, Au JSK, et al. Treatment results for nasopharyngeal carcinoma in the modern era: The Hong Kong experience. Int J Radiat Oncol Biol Phys 2005; 61: 1107–16. 91 Chua DTT, Sham JST, Kwong DLW, Au GKH. Treatment outcome after radiotherapy alone for patients with Stage I-II nasopharyngeal carcinoma. Cancer 2003; 98: 74–80. 92 Cooper JS, Zhang Q, Pajak TF, et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: Postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012; 84: 1198–205. 93 Popovtzer A, Gluck I, Chepeha DB, et al. The Pattern of Failure After Reirradiation of Recurrent Squamous Cell Head and Neck Cancer: Implications for Defining the Targets. Int J Radiat Oncol Biol Phys 2009; 74: 1342–7. 94 Chow LQM. Head and neck cancer. N Engl J Med 2020; 382: 60–72. 95 Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 2019; 394: 1915–28. 96 Goodwin WJ. Salvage Surgery for Patients With Recurrent Squamous Cell Carcinoma of the Upper Aerodigestive Tract: When Do the Ends Justify the Means? Laryngoscope 2000; 110: 1–18. 97 McDonald MW, Lawson J, Garg MK, et al. ACR appropriateness criteria® retreatment of recurrent head and neck cancer after prior definitive radiation: Expert panel on radiation oncology-head and neck cancer. Int J Radiat Oncol Biol Phys 2011; 80: 1292– 8. 98 Ward MC, Riaz N, Caudell JJ, et al. Refining Patient Selection for Reirradiation of Head and Neck Squamous Carcinoma in the IMRT Era: A Multi-institution Cohort Study by the MIRI Collaborative. Int J Radiat Oncol Biol Phys 2018; 100: 586–94. 99 Tanvetyanon T, Padhya T, McCaffrey J, et al. Prognostic factors for survival after salvage reirradiation of head and neck cancer. J Clin Oncol 2009; 27: 1983–91. 100 Riaz N, Hong JC, Sherman EJ, et al. A nomogram to predict loco-regional control after re-irradiation for head and neck cancer. Radiother Oncol 2014; 111: 382–7. 101 Duprez F, Madani I, Bonte K, et al. Intensity-modulated radiotherapy for recurrent and second primary head and neck cancer in previously irradiated territory. Radiother Oncol 2009; 93: 563–9. 102 Takiar V, Garden AS, Ma D, et al. Reirradiation of head and neck cancers with intensity modulated radiation therapy: Outcomes and analyses. Int J Radiat Oncol Biol Phys 2016; 95: 1117–31. 103 Strojan P, Corry J, Eisbruch A, et al. Recurrent and second primary squamous cell carcinoma of the head and neck: When and how to reirradiate. Head Neck 2015; 37: 134–50. 104 Salama JK, Vokes EE, Chmura SJ, et al. Long-term outcome of concurrent chemotherapy and reirradiation for recurrent and second primary head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2006. DOI:10.1016/j.ijrobp.2005.07.005. 105 Haraf DJ, Weichselbaum RR, Yokes EE. Re-irradiation with concomitant chemotherapy of unresectable recurrent head and neck cancer: A potentially curable disease. Ann Oncol 1996; 7: 913–8. 106 Concha-Benavente F, Srivastava RM, Trivedi S, et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck Cancer. 2016 DOI:10.1158/0008-5472.CAN-15-2001. 107 Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008; 359: 1116–27. 108 Gillison ML, Blumenschein G, Fayette J, et al. CheckMate 141: 1-Year Update and Subgroup Analysis of Nivolumab as First-Line Therapy in Patients with Recurrent/Metastatic Head and Neck Cancer. Oncologist 2018; 23: 1079–82. 109 Tahara M, Kiyota N, Yokota T, et al. Phase II trial of combination treatment with paclitaxel, carboplatin and cetuximab (PCE) as first-line treatment in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck (CSPORHN02). Ann Oncol 2018; 29: 1004–9. 110 Plavc G, Jesenko T, Oražem M, Strojan P. Challenges in Combining Immunotherapy with Radiotherapy in Recurrent/Metastatic Head and Neck Cancer. Cancers (Basel) 2020; 12: 3197. 111 Herbst RS, Langer CJ. Epidermal growth factor receptors as a target for cancer treatment: The emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol 2002; 29: 27–36. 112 Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based the. J Clin Oncol 2007; 25: 2171–7. 113 Vermorken JB, Stöhlmacher-Williams J, Davidenko I, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): An open-label phase 3 randomised trial. Lancet Oncol 2013; 14: 697–710. 114 Argiris A, Harrington KJ, Tahara M, et al. Evidence-based treatment options in recurrent and/or metastatic squamous cell carcinoma of the head and neck. Front Oncol 2017; 7: 1–14. 115 Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016; 375: 1856–67. 116 Harrington KJ, Ferris RL, Blumenschein G, et al. Nivolumab versus standard, singleagent therapy of investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141): health-related quality-of-life results from a randomised, phase 3 trial. Lancet Oncol 2017; 18: 1104–15. 117 Fayers P, Bottomley A. Quality of life research within the EORTC - The EORTC QLQC30. Eur J Cancer 2002; 38: 125–33. 118 Bjordal K, de Graeff A, Fayers PM, et al. A 12 country field study of the EORTC QLQC30 (version 3.0) and the head and neck cancer specific module (EORTC QLQ-H&N35) in head and neck patients. EORTC Quality of Life Group. Eur J Cancer 2000; 36: 1796– 807. 119 Muzaffar J, Bari S, Kirtane K, Chung CH. Recent advances and future directions in clinical management of head and neck squamous cell carcinoma. Cancers (Basel) 2021; 13: 1–16. 120 Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 2014; 124: 687–95. 121 Dovedi SJ, Adlard AL, Lipowska-Bhalla G, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 2014; 74: 5458–68. 122 Altay-Langguth A, Balermpas P, Brandts C, et al. Re-irradiation with concurrent and maintenance nivolumab in locally recurrent and inoperable squamous cell carcinoma of the head and neck: A single-center cohort study. Clin Transl Radiat Oncol 2021; 28: 71– 8. 123 McBride S, Sherman E, Jillian Tsai C, et al. Randomized phase II trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma. J Clin Oncol 2021; 39: 30–7. 124 Plavc G, Strojan P. Combining radiotherapy and immunotherapy in definitive treatment of head and neck squamous cell carcinoma: Review of current clinical trials. Radiol Oncol 2020; 54: 377–93. 125 Guigay J, Fayette J, Dillies AF, et al. Cetuximab, docetaxel, and cisplatin as first-line treatment in patients with recurrent or metastatic head and neck squamous cell carcinoma: A multicenter, phase II GORTEC study. Ann Oncol 2015; 26: 1941–7. 126 Oken MM, Creech RH, Davis TE. Toxicology and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. Cancer Clin. Trials. 1982; 5: 649–55. 127 Fowler JF. 21 Years of biologically effective dose. Br J Radiol 2010; 83: 554–68. 128 Chang PH, Yeh KY, Wang CH, et al. Impact of the pretreatment Glasgow prognostic score on treatment tolerance, toxicities, and survival in patients with advanced head and neck cancer undergoing concurrent chemoradiotherapy. Head Neck 2017; 39: 1990–6. 129 Hanai N, Sawabe M, Kimura T, et al. The high-sensitivity modified Glasgow prognostic score is superior to the modified Glasgow prognostic score as a prognostic predictor for head and neck cancer. Oncotarget 2018; 9: 37008–16. 130 Gao N, Yang R, Meng Z, Wang W. The prognostic value of C-reactive protein/albumin ratio in nasopharyngeal carcinoma: a meta-analysis. Biosci Rep 2018; 38: 1–8. 131 Sun P, Chen C, Xia Y, et al. The Ratio of C-Reactive Protein/Albumin is a Novel Inflammatory Predictor of Overall Survival in Cisplatin-Based Treated Patients with Metastatic Nasopharyngeal Carcinoma. Dis Markers 2017; 2017. DOI:10.1155/2017/6570808. 132 Wang Q, Song X, Zhao Y, He Q, Shi M, Xu P. Preoperative high c-reactive protein / albumin ratio is a poor prognostic factor of oral squamous cell carcinoma. 2019; 15: 2277–86. 133 Azab B, Bhatt VR, Phookan J, et al. Usefulness of the Neutrophil-to-Lymphocyte Ratio in Predicting Short- and Long-Term Mortality in Breast Cancer Patients. 2012; : 217– 24. 134 Fang H, Huang XY, Chien H, Chang JT. Refining the Role of Preoperative C-Reactive Protein by Neutrophil / Lymphocyte Ratio in Oral Cavity Squamous Cell Carcinoma. DOI:10.1002/lary.24105. 135 Valdes M, Villeda J, Mithoowani H, Pitre T, Chasen M. Inflammatory markers as prognostic factors of recurrence in advanced-stage squamous cell carcinoma of the head and neck. Curr Oncol 2020; 27: 135–41. 136 Chikuie N, Hamamoto T, Ueda T, et al. Baseline Neutrophil-to-Lymphocyte Ratio and Glasgow Prognostic Score are Associated with Clinical Outcome in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma Treated with Nivolumab. Acta Med Okayama 2021; 75: 335–49. 137 Zwiener I, Blettner M, Hommel G. Überlebenszeitanalyse: Teil 15 der serie zur bewertung wissenschaftlicher publikationen. Dtsch Arztebl 2011; 108: 163–9. 138 Kuss O, Blettner M, Börgermann J. Propensity Score - eine alternative Methode zur Analyse von Therapieeffekten - Teil 23 der Serie zur Bewertung wissenschaftlicher Publikationen. Dtsch Arztebl Int 2016; 113: 597–603. 139 Wienecke A, Kraywinkel K. Epidemiology of head and neck cancer in Germany. Onkologe 2019; 25: 190–200. 140 Dionisi F, Fiorica F, D’Angelo E, et al. Organs at risk’s tolerance and dose limits for head and neck cancer re-irradiation: A literature review. Oral Oncol 2019; 98: 35–47. 141 Caudell JJ, Ward MC, Riaz N, et al. Volume, Dose, and Fractionation Considerations for IMRT-based Reirradiation in Head and Neck Cancer: A Multi-institution Analysis. Int J Radiat Oncol 2018; 100: 606–17. 142 Salama JK, Vokes EE, Chmura SJ, et al. Long-term outcome of concurrent chemotherapy and reirradiation for recurrent and second primary head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2006; 64: 382–91. 143 Denis F, Garaud P, Bardet E, et al. Late toxicity results of the GORTEC 94-01 randomized trial comparing radiotherapy with concomitant radiochemotherapy for advanced-stage oropharynx carcinoma: Comparison of LENT/SOMA, RTOG/EORTC, and NCI-CTC scoring systems. Int J Radiat Oncol Biol Phys 2003; 55: 93–8. 144 Dirix P, Nuyts S, Van Den Bogaert W. Radiation-induced xerostomia in patients with head and neck cancer: A literature review. Cancer 2006; 107: 2525–34. 145 Pow EHN, Kwong DLW, McMillan AS, et al. Xerostomia and quality of life after intensitymodulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial. Int J Radiat Oncol Biol Phys 2006; 66: 981–91. 146 Walker MP, Wichman B, Cheng A-L, Coster J, Williams KB. Impact of radiotherapy dose on dentition breakdown in head and neck cancer patients. Pract Radiat Oncol 2011; 1: 142–8. 147 Sroussi HY, Epstein JB, Bensadoun RJ, et al. Common oral complications of head and neck cancer radiation therapy: mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med 2017; 6: 2918–31. 148 Kielbassa AM, Hinkelbein W, Hellwig E, Meyer-Lückel H. Radiation-related damage to dentition. Lancet Oncol 2006; 7: 326–35. 149 Ammajan R, Joseph R, Rajeev R, Choudhary K, Vidhyadharan K. Assessment of periodontal changes in patients undergoing radiotherapy for head and neck malignancy: A hospital-based study. J Cancer Res Ther 2013; 9: 630–7. 150 De Mello RA, Gerós S, Alves MP, Moreira F, Avezedo I, Dinis J. Cetuximab plus platinum-based chemotherapy in head and neck squamous cell carcinoma: A retrospective study in a single comprehensive European cancer institution. PLoS One 2014; 9: 1–7. 151 Enblom A, Bergius Axelsson B, Steineck G, Hammar M, Börjeson S. One third of patients with radiotherapy-induced nausea consider their antiemetic treatment insufficient. Support Care Cancer 2009; 17: 23–32. 152 Roila F, Molassiotis A, Herrstedt J, et al. 2016 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann Oncol 2016; 27: v119–33. 153 Maranzano E, De Angelis V, Pergolizzi S, et al. A prospective observational trial on emesis in radiotherapy: Analysis of 1020 patients recruited in 45 Italian radiation oncology centres. Radiother Oncol 2010; 94: 36–41. 154 Grunberg SM, Warr D, Gralla RJ, et al. Evaluation of new antiemetic agents and definition of antineoplastic agent emetogenicity - State of the art. Support Care Cancer 2011; 19: 2–6. 155 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Supportive Therapie bei onkologischen PatientInnen - Langversion 1.3, 2020. AWMF Regist. 032/054OL. 2020. 156 Soulières D, Aguilar JL, Chen E, et al. Cetuximab plus platinum-based chemotherapy in head and neck squamous cell carcinoma: A randomized, double-blind safety study comparing cetuximab produced from two manufacturing processes using the EXTREME study regimen. BMC Cancer 2016; 16: 1–10. 157 Taberna M, Rullan AJ, Hierro C, et al. Late toxicity after radical treatment for locally advanced head and neck cancer. Oral Oncol 2015; 51: 795–9. 158 Jereczek-Fossa BA, Santoro L, Alterio D, et al. Fatigue During Head-And-Neck Radiotherapy: Prospective Study on 117 Consecutive Patients. Int J Radiat Oncol Biol Phys 2007; 68: 403–15. 159 Vermorken JB, Specenier P. Optimal treatment for recurrent/metastatic head and neck cancer. Ann Oncol 2010; 21: vii252–61. 160 Nguyen Van D, Le Van Q, Nguyen Thi Thu N, Bui Van G, Ta Van T. The impact of transarterial embolization on the result of chemoradiotherapy in oral cavity cancer. Ear, Nose Throat J 2021; 0: 014556132110541. 161 Gillison ML, Trotti AM, Harris J, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet 2019; 393: 40–50. 162 Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 2010; 11: 21– 8. 163 Petrelli F, Coinu A, Riboldi V, et al. Concomitant platinum-based chemotherapy or cetuximab with radiotherapy for locally advanced head and neck cancer: A systematic review and meta-analysis of published studies. Oral Oncol 2014; 50: 1041–8. 164 Petit C, Lacas B, Pignon JP, et al. Chemotherapy and radiotherapy in locally advanced head and neck cancer: an individual patient data network meta-analysis. Lancet Oncol 2021; 22: 727–36. 165 Fasano M, D’onofrio I, Belfiore MP, et al. Head and Neck Squamous Cell Carcinoma in Elderly Patients: Role of Radiotherapy and Chemotherapy. Cancers (Basel) 2022; 14: 1–15. 166 Magnes T, Melchardt T, Weiss L, et al. Prognostic score in patients with recurrent or metastatic carcinoma of the head and neck treated with cetuximab and chemotherapy. 2017; : 1–12. 167 Guo SS, Tang LQ, Chen QY, et al. Is hemoglobin level in patients with nasopharyngeal carcinoma still a significant prognostic factor in the era of intensity-modulated radiotherapy technology? PLoS One 2015; 10: 1–11. 168 Argiris A, Li Y, Murphy BA, Langer CJ, Forastiere AA. Outcome of elderly patients with recurrent or metastatic head and neck cancer treated with cisplatin-based chemotherapy. J Clin Oncol 2004; 22: 262–8. 169 Rawat S, Ahlawat P, Kakria A, et al. Comparison between weekly cisplatin-enhanced radiotherapy and cetuximab-enhanced radiotherapy in locally advanced head and neck cancer: first retrospective study in Asian population. Asia Pac J Clin Oncol 2017; 13: 195–203. 170 Magnes T, Wagner SM, Melchardt T, et al. Postoperative chemoradiotherapy with cisplatin is superior to radioimmunotherapy with cetuximab and radiotherapy alone: Analysis of the Austrian head and neck cancer registry of the AGMT. Wien Klin Wochenschr 2021; 133: 1131–6. 171 Siano M, Jarisch N, Joerger M, Espeli V. Percutaneous endoscopic gastrostomy tube is a negative prognostic factor for recurrent/ Metastatic head and neck cancer. Anticancer Res 2018; 38: 3725–9. 172 Fung E, Strosberg DS, Jones EL, et al. Incidence of abdominal wall metastases following percutaneous endoscopic gastrostomy placement in patients with head and neck cancer. Surg Endosc 2017; 31: 3623–7. 173 Deurloo EE, Schultze Kool LJ, Kröger R, Van Coevorden F, Balm AJM. Percutaneous radiological gastrostomy in patients with head and neck cancer. Eur J Surg Oncol 2001; 27: 94–7. 174 Gama RR, Song Y, Zhang Q, et al. Body mass index and prognosis in patients with head and neck cancer. Head Neck 2017; 39: 1226–33. 175 Langius JAE, Bakker S, Rietveld DHF, et al. Critical weight loss is a major prognostic indicator for disease-specific survival in patients with head and neck cancer receiving radiotherapy. Br J Cancer 2013; 109: 1093–9. 176 Van Bokhorst-De Van Der Schueren MAE, Van Leeuwen PAM, Kuik DJ, et al. The impact of nutritional status on the prognoses of patients with advanced head and neck cancer. Cancer 1999; 86: 519–27. 177 Fattouh M, Chang GY, Ow TJ, et al. Association between pretreatment obesity, sarcopenia, and survival in patients with head and neck cancer. Head Neck 2019; 41: 707–14. 178 Grossberg AJ, Chamchod S, Fuller CD, et al. Association of Body Composition With Survival and Locoregional Control of Radiotherapy-Treated Head and Neck Squamous Cell Carcinoma. JAMA Oncol 2016; 2: 782. 179 Albergotti WG, Davis KS, Abberbock S, et al. Association of pretreatment body mass index and survival in human papillomavirus positive oropharyngeal squamous cell carcinoma. Oral Oncol 2016; 60: 55–60. 180 Hicks DF, Bakst R, Doucette J, et al. Impact of obesity on outcomes for patients with head and neck cancer. Oral Oncol 2018; 83: 11–7. 181 Nakayama M, Tabuchi K, Hara A. Clinical utility of the modified Glasgow prognostic score in patients with advanced head and neck cancer. Head Neck 2015; 37: 1745–9. 182 Ueki Y, Takahashi T, Ota H, Shodo R, Yamazaki K, Horii A. Predicting the treatment outcome of nivolumab in recurrent or metastatic head and neck squamous cell carcinoma: prognostic value of combined performance status and modified Glasgow prognostic score. Eur Arch Oto-Rhino-Laryngology 2020; 277: 2341–7. 183 Minohara K, Matoba T, Kawakita D, et al. Novel Prognostic Score for recurrent or metastatic head and neck cancer patients treated with Nivolumab. Sci Rep 2021; 11: 1– 8. 184 Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature. Nutr J 2010; 9: 69. 185 Medow MA, Weed HG, Schuller DE. Simple predictors of survival in head and neck squamous cell carcinoma. Arch Otolaryngol - Head Neck Surg 2002; 128: 1282–6. 186 Citak E, Tulek Z, Uzel O. Nutritional status in patients with head and neck cancer undergoing radiotherapy: a longitudinal study. Support Care Cancer 2019; 27: 239–47. 187 Zhou T, Zhan J, Hong S, Hu Z. Ratio of C-Reactive Protein / Albumin is An Inflammatory Prognostic Score for Predicting Overall Survival of Patients with Small-cell Lung Cancer. Nat Publ Gr 2015; : 1–9. 188 Ranzani OT, Zampieri FG, Forte DN, Cesar L, Azevedo P, Park M. C-Reactive Protein / Albumin Ratio Predicts 90-Day Mortality of Septic Patients. 2013; 8. DOI:10.1371/journal.pone.0059321. 189 Dubray B, Mosseri V, Brunin F, et al. Anemia is associated with lower local-regional control and survival after radiation therapy for head and neck cancer: A prospective study. Radiology 1996; 201: 553–8. 190 Lee WR, Berkey B, Marcial V, et al. Anemia is associated with decreased survival and increased locoregional failure in patients with locally advanced head and neck carcinoma: A secondary analysis of RTOG 85-27. Int J Radiat Oncol Biol Phys 1998; 42: 1069–75. 191 Ghadjar P, Pöttgen C, Joos D, et al. Hämoglobin- und Kreatininwerte als prognostische Outcome-Faktoren nach simultaner Radiochemotherapie lokal fortgeschrittener Kopf- Hals-Tumoren: Sekundäre Ergebnisse von 2 randomisierten europäischen Phase-IIIStudien (ARO95-06, SAKK 10/94). Strahlentherapie und Onkol 2016; 192: 552–60. 192 Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 1996; 41: 31–9. 193 Tham T, Olson C, Wotman M, et al. Evaluation of the prognostic utility of the hemoglobin-to-red cell distribution width ratio in head and neck cancer. Eur Arch Oto- Rhino-Laryngology 2018; 275: 2869–78. 194 Sun P, Zhang F, Chen C, et al. The ratio of hemoglobin to red cell distribution width as a novel prognostic parameter in esophageal squamous cell carcinoma: A retrospective study from southern China. Oncotarget 2016; 7: 42650–60. 195 Backes C, Bier H, Knopf A. Therapeutic implications of tumor free margins in head and neck squamous cell carcinoma. Oncotarget 2017; 8: 84320–8. 196 Wong LY, Wei WI, Lam LK, Yuen APW. Salvage of recurrent head and neck squamous cell carcinoma after primary curative surgery. Head Neck 2003; 25: 953–9. 197 Salama JK, Vokes EE. Concurrent Chemotherapy and Re-irradiation for Locoregionally Recurrent Head and Neck Cancer. Semin Oncol 2008; 35: 251–61. 198 Brook I. Early side effects of radiation treatment for head and neck cancer. Cancer/Radiotherapie 2021; 25: 507–13. 199 Pratson CL, Larkins MC, Karimian BH, et al. The Impact of Smoking, Alcohol Use, Recurrent Disease, and Age on the Development of Neck Fibrosis in Head and Neck Cancer Patients Following Radiation Therapy. Front Oncol 2021; 11: 1–7.
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/72147

Downloads

Downloads per month over past year

Export

Actions (login required)

View Item View Item