Stephan, G., Schilke, P., Le Bourlot, J., Schmiedeke, A., Choudhury, R., Godard, B. and Sanchez-Monge, A. (2018). Chemical modeling of internal photon-dominated regions surrounding deeply embedded HC/UCHII regions. Astron. Astrophys., 617. LES ULIS CEDEX A: EDP SCIENCES S A. ISSN 1432-0746

Full text not available from this repository.

Abstract

Aims. We aim to investigate the chemistry of internal photon-dominated regions (PDRs) surrounding deeply embedded hypercompact (HC) and ultracompact (UC) HII regions. We search for specific tracers of this evolutionary stage of massive star formation that can be detected with current astronomical facilities. Methods. We modeled hot cores with embedded HC/UCHII regions (called HII region models in the article despite the fact that we do not model the HII region itself), by coupling the astrochemical code Saptarsy to a radiative transfer framework obtaining the spatio-temporal evolution of abundances as well as time-dependent synthetic spectra. In these models where we focused on the internal PDR surrounding the HII region, the gas temperature is set to the dust temperature and we do not include dynamics thus the density structure is fixed. We compared this to hot molecular core (HMC) models and studied the effect on the chemistry of the radiation field which is included in the HII region models only during the computation of abundances. In addition, we investigated the chemical evolution of the gas surrounding HII regions with models of different densities at the ionization front, different sizes of the ionized cavity and different initial abundances. Results. We obtain the time evolution of synthetic spectra for a dozen of selected species as well as ratios of their integrated intensities. We find that some molecules such as C, N2H+, CN, and HCO do not trace the inner core and so are not good tracers to distinguish the HII/PDR regions to the HMCs phase. On the contrary, C+ and O trace the internal PDRs, in the two models starting with different initial abundances, but are unfortunately currently unobservable with the current achievable spatial resolution because of the very thin internal PDR (Delta r(PDR) < 100 AU). The emission of these two tracers is very dependent on the size of the HII region and on the density in the PDR. In addition, we find that the abundance profiles are highly affected by the choice of the initial abundances, hence the importance to properly define them.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Stephan, G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schilke, P.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Le Bourlot, J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schmiedeke, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Choudhury, R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Godard, B.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sanchez-Monge, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-172968
DOI: 10.1051/0004-6361/201730639
Journal or Publication Title: Astron. Astrophys.
Volume: 617
Date: 2018
Publisher: EDP SCIENCES S A
Place of Publication: LES ULIS CEDEX A
ISSN: 1432-0746
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
H-II REGIONS; MASSIVE STAR-FORMATION; INTERSTELLAR GAS; CHEMISTRY; CLOUDS; HCN; PHOTODISSOCIATION; ABUNDANCES; DUST; HNCMultiple languages
Astronomy & AstrophysicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/17296

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item