Alldridge, Alexander ORCID: 0000-0001-6331-1672 (2017). Frechet Globalisations of Harish-Chandra Supermodules. Int. Math. Res. Notices, 2017 (17). S. 5182 - 5233. OXFORD: OXFORD UNIV PRESS. ISSN 1687-0247

Full text not available from this repository.

Abstract

For any Lie supergroup whose underlying Lie group is reductive, we prove an extension of the Casselman-Wallach globalisation theorem: there is an equivalence between the category of Harish-Chandra modules and the category of SF-representations (smooth Frechet representations of moderate growth) whose module of finite vectors is Harish-Chandra. As an application, we extend to Lie supergroups a general form of the Gelfand-Kazhdan criterion due to Sun-Zhu.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Alldridge, AlexanderUNSPECIFIEDorcid.org/0000-0001-6331-1672UNSPECIFIED
URN: urn:nbn:de:hbz:38-220146
DOI: 10.1093/imrn/rnw155
Journal or Publication Title: Int. Math. Res. Notices
Volume: 2017
Number: 17
Page Range: S. 5182 - 5233
Date: 2017
Publisher: OXFORD UNIV PRESS
Place of Publication: OXFORD
ISSN: 1687-0247
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
UNITARY IRREDUCIBLE REPRESENTATIONS; LIE SUPERGROUPS; ALGEBRAS; CLASSIFICATION; EXTENSIONS; THEOREMSMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/22014

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item