Louvet, F., Motte, F., Gusdorf, A., Lu'o'ng, Q. Nguyen, Lesaffre, P., Duarte-Cabral, A., Maury, A., Schneider, N., Hill, T., Schilke, P. and Gueth, F. (2016). Tracing extended low-velocity shocks through SiO emission Case study of the W43-MM1 ridge. Astron. Astrophys., 595. LES ULIS CEDEX A: EDP SCIENCES S A. ISSN 1432-0746

Full text not available from this repository.

Abstract

Aims. Previous literature suggests that the densest structures in the interstellar medium form through colliding flows, but patent evidence of this process is still missing. Recent literature proposes using SiO line emission to trace low-velocity shocks associated with cloud formation through collision. In this paper we investigate the bright and extended SiO(2 1) emission observed along the similar to 5 pc-long W43-MM1 ridge to determine its origin. Methods. We used high angular resolution images of the SiO(2 1) and HCN(1 0) emission lines obtained with the IRAM plateau de Bure (PdBI) interferometer and combined with data from the IRAM 30m radiotelescope. These data were complemented by a Herschel column density map of the region. We performed spectral analysis of SiO and HCN emission line profiles to identify protostellar outflows and spatially disentangle two velocity components associated with low-and high-velocity shocks. Then, we compared the low-velocity shock component to a dedicated grid of one-dimensional (1D) radiative shock models. Results. We find that the SiO emission originates from a mixture of high-velocity shocks caused by bipolar outflows and low-velocity shocks. Using SiO and HCN emission lines, we extract seven bipolar outflows associated with massive dense cores previously identified within the W43-MM1 mini-starburst cluster. Comparing observations with dedicated Paris-Durham shock models constrains the velocity of the low-velocity shock component from 7 to 12 km s(-1). Conclusions. The SiO arising from low-velocity shocks spreads along the complete length of the ridge. Its contribution represents at least 45% and up to 100% of the total SiO emission depending on the area considered. The low-velocity component of SiO is most likely associated with the ridge formation through colliding flows or cloud-cloud collision.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Louvet, F.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Motte, F.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Gusdorf, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lu'o'ng, Q. NguyenUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lesaffre, P.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Duarte-Cabral, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Maury, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schneider, N.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hill, T.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schilke, P.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Gueth, F.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-257615
DOI: 10.1051/0004-6361/201629077
Journal or Publication Title: Astron. Astrophys.
Volume: 595
Date: 2016
Publisher: EDP SCIENCES S A
Place of Publication: LES ULIS CEDEX A
ISSN: 1432-0746
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
STAR-FORMATION; INTERSTELLAR JETS; MOLECULAR CLOUDS; MAGNETIC-FIELDS; CO-OBSERVATIONS; LINE EMISSION; COMPLEX; PHOTODESORPTION; REGIONS; GRAINSMultiple languages
Astronomy & AstrophysicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/25761

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item