Koepsell, Frederik Udo Manfred ORCID: 0000-0001-8866-102X (2020). Biophysikalische Vorgänge in Biofilmen von Haematococcus pluvialis während der Kultivierung in Porus Substrate Photobioreaktoren. Thesis Abstract, Universität zu Köln.


Download (11kB) | Preview

Download (12kB) | Preview

Item Type: Thesis Abstract
Translated title:
Biophysical processes in artificial Haematococcus pluvialis biofilm during its cultivation in Porous Substrate BioreactorsEnglish
CreatorsEmailORCIDORCID Put Code
Koepsell, Frederik Udo Manfredfrederik.koepsell@posteo.netorcid.org/0000-0001-8866-102XUNSPECIFIED
URN: urn:nbn:de:hbz:38-302430
Date: 2020
Language: German
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Biology > Botanical Institute
Subjects: Natural sciences and mathematics
Chemistry and allied sciences
Life sciences
Uncontrolled Keywords:
Haematococcus pluvialis, immobilisierte Kultivierung, Mikrosensoren, Light-Dark-Shift, Mikroalgen, Nährstoffmangel, Astaxanthin, Carotenoide, Twin-Layer, Porus Substrate Photobioreaktoren, PSBRs, TL-PSBR, PSBRGerman
Haematococcus pluvialis, immobilized cultivation, Microsensors, Light-Dark-Shift, Light measurements, light spectra, nutrient deficiency, nitrogen starvation, phosphorus starvation, impact on biomass and astaxanthin accumulation, Astaxanthin, carotenoids, Twin-Layer, Porous Substrate Bioreactors, PSBRs, TL-PSBR, PSBREnglish
Date of oral exam: 11 February 2020
NameAcademic Title
Melkonian, Michaelem. Prof. Dr.
Becker, Burkhardapl. Prof. Dr.
References: Acién Fernández, F. G., Fernández Sevilla, J. M. & Molina Grima, E. (2013). Photobioreactors for the production of microalgae. Reviews in Environmental Science and Bio/Technology, 12 (2), 131–151. doi:10.1007/s11157-012-9307-6 Allewaert, C. C., Vanormelingen, P., Pröschold, T., Gomez, P. I., González, M. A., Bilcke, G. et al. (2015). Species diversity in European Haematococcus pluvialis (Chlorophyceae, Volvocales). Phycologia, 54 (6), 583–598. Taylor & Francis. doi:10.2216/15-55.1 Ambati, R. R., Phang, S.-M., Ravi, S. & Aswathanarayana, R. G. (2014). Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Marine drugs, 12 (1), 128–152. Multidisciplinary Digital Publishing Institute. doi:10.3390/md12010128 Berner, F., Heimann, K. & Sheehan, M. (2015). Microalgal biofilms for biomass production. Journal of applied phycology, 27 (5), 1793–1804. Springer. doi:10.1007/s10811-014-0489-x Bernstein, H. C., Kesaano, M., Moll, K., Smith, T., Gerlach, R., Carlson, R. P. et al. (2014). Direct measurement and characterization of active photosynthesis zones inside wastewater remediating and biofuel producing microalgal biofilms. Bioresource technology, 156, 206–215. Elsevier. doi:10.1016/j.biortech.2014.01.001 Beyenal, H. & Lewandowski, Z. (2002). Internal and external mass transfer in biofilms grown at various flow velocities. Biotechnology progress, 18 (1), 55–61. Wiley Online Library. doi:doi.org/10.1021/bp010129s Bjerkeng, B. (2008). Carotenoids in aquaculture: fish and crustaceans. Carotenoids (S. 237–254). Springer. Blanken, W., Cuaresma, M., Wijffels, R. H. & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2 (4), 333–340. Elsevier. doi:10.1016/j.algal.2013.09.004 Blanken, W., Janssen, M., Cuaresma, M., Libor, Z., Bhaiji, T. & Wijffels, R. (2014). Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnology and bioengineering, 111 (12), 2436–2445. Wiley Online Library. doi:doi.org/10.1002/bit.25301 Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of applied phycology, 25 (3), 743–756. Springer. doi:10.1007/s10811-013-9983-9 Boussiba, S. (2002). Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiologia Plantarum, 108 (2), 111–117. Wiley Online Library. doi:10.1034/j.1399-3054.2000.108002111.x Boussiba, S. & Vonshak, A. (1991). Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant and cell Physiology, 32 (7), 1077–1082. Oxford University Press. doi:doi.org/10.1111/j.1744-7909.2007.00468.x Brennan, L. & Owende, P. (2010). Biofuels from microalgae — a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and sustainable energy reviews, 14 (2), 557–577. Elsevier. doi:doi.org/10.1016/j.rser.2009.10.009 Çebi, Z. (2017). Efficient microscale screening of various Haematococcus pluvialis strains for growth and astaxanthin production. Universitäts-und Stadtbibliothek Köln. Chaumont, D. & Thépenier, C. (1995). Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle. Journal of applied phycology, 7 (6), 529–537. Springer. Chekanov, K., Lobakova, E., Selyakh, I., Semenova, L., Sidorov, R. & Solovchenko, A. (2014). Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia). Marine drugs, 12 (8), 4504–4520. Multidisciplinary Digital Publishing Institute. doi:10.3390/md12084504 Chekanov, K., Lukyanov, A., Boussiba, S., Aflalo, C. & Solovchenko, A. (2016). Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back. Photosynthesis research, 128 (3), 313–323. Springer. doi:10.1007/s11120-016-0246-x Chien, Y.-H. & Jeng, S.-C. (1992). Pigmentation of kuruma prawn, Penaeus japonicus Bate, by various pigment sources and levels and feeding regimes. Aquaculture, 102 (4), 333–346. Elsevier. doi:10.1016/0044-8486(92)90186-O Christiansen, R., Lie, Ø. & Torrissen, O. (1994). Effect of astaxanthin and vitamin A on growth and survival during first feeding of Atlantic salmon, Salmo salar L. Aquaculture research, 25 (9), 903–914. Wiley Online Library. doi:10.1111/j.1365-2109.1994.tb01352.x Damiani, M. C., Leonardi, P. I., Pieroni, O. I. & Cáceres, E. J. (2006). Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia, 45 (6), 616–623. Taylor & Francis. doi:10.2216/05-27.1 De Beer, D. & Stoodley, P. (2006). Microbial biofilms. Prokaryotes, 1, 904–937. Springer-Verlag New York. Disch, A., SCHWENDER, J., MÜLLER, C., LICHTENTHALER, H. K. & ROHMER, M. (1998). Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochemical Journal, 333 (2), 381–388. Portland Press Ltd. doi:10.1042/bj3330381 Do, T.-T., Ong, B.-N., Nguyen Tran, M.-L., Nguyen, D., Melkonian, M. & Tran, H.-D. (2019). Biomass and astaxanthin productivities of Haematococcus pluvialis in an angled twin-layer porous substrate photobioreactor: effect of inoculum density and storage time. Biology, 8 (3), 68. Multidisciplinary Digital Publishing Institute. doi:10.3390/biology8030068 Dong, L.-Y., Jin, J., Lu, G. & Kang, X.-L. (2013). Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress. Marine Drugs, 11 (3), 960–974. Multidisciplinary Digital Publishing Institute. doi:10.3390/md11030960 Droop, M. (1954). Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis Flotow. Archiv für Mikrobiologie, 20 (4), 391–397. Springer. doi:10.1007/BF00690882 Droop, M. (1955). Carotenogenesis in Haematococcus pluvialis. Nature, 175 (4444), 42–42. Nature Publishing Group. Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability density. Theory of Probability & Its Applications, 14 (1), 153–158. SIAM. doi:10.1137/1114019 Experts, I. (2015). Global Astaxanthin Market–Sources, Technologies and Applications. Healthcare & Pharma. Fábregas, J., Otero, A., Maseda, A. & Domínguez, A. (2001). Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. Journal of Biotechnology, 89 (1), 65–71. Elsevier. doi:10.1016/s0168-1656(01)00289-9 Fan, L., Vonshak, A. & Boussiba, S. (1994). Effect of temperature and irradiance on growth of Haematococcus pluvialis (chlorophyceae). Journal of Phycology, 30 (5), 829–833. Wiley Online Library. doi:10.1111/j.0022-3646.1994.00829.x Flotow, J. von. (1844). Beobachtungen über Haematococcus pluvialis. Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher, 20, 413–606. Genin, S. N., Aitchison, J. S. & Allen, D. G. (2014). Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresource technology, 155, 136–143. Elsevier. doi:doi.org/10.1016/j.biortech.2013.12.060 Giannelli, L., Yamada, H., Katsuda, T. & Yamaji, H. (2015). Effects of temperature on the astaxanthin productivity and light harvesting characteristics of the green alga Haematococcus pluvialis. Journal of bioscience and bioengineering, 119 (3), 345–350. Elsevier. doi:doi.org/10.1016/j.jbiosc.2014.09.002 Gieseke, A. & de Beer, D. (2004). Use of microelectrodes to measure in situ microbial activities in biofilms, sediments, and microbial mats. Molecular Microbial Ecology Manual, 2, 1581–1612. Dordrecht, the Netherlands: Kluwer. doi:10.1007/978-1-4020-2177-0_802 Glud, R. N., Ramsing, N. B. & Revsbech, N. P. (1992). PHOTOSYNTHESIS AND PHOTOSYNTHESIS‐COUPLED RESPIRATION IN NATURAL BIOFILMS QUANTIFIED WITH OXYGEN MICROSENSORS. Journal of Phycology, 28 (1), 51–60. Wiley Online Library. doi:10.1111/j.0022-3646.1992.00051.x González, M. A., Cifuentes, A. S. & Gómez, P. I. (2009). Growth and total carotenoid content in four Chilean strains of Haematococcus pluvialis Flotow, under laboratory conditions/Crecimiento y contenido total de carotenoides en cuatro cepas chilenas de Haematococcus pluvialis Flotow, bajo condiciones de laboratorio. Gayana. Botanica, 66 (1), 58. Universidad de Concepcion, Facultad de Ciencias Naturales y Oceanograficas. doi:10.4067/S0717-66432009000100006 Goodwin, T. & Jamikorn, M. (1954). Studies in carotenogenesis. 11. Carotenoid synthesis in the alga Haematococcus pluvialis. Biochemical Journal, 57 (3), 376–381. Portland Press Ltd. doi:10.1042/bj0570376 Gross, G. J., Hazen, S. L. & Lockwood, S. F. (2006). Seven day oral supplementation with Cardax TM (disodium disuccinate astaxanthin) provides significant cardioprotection and reduces oxidative stress in rats. Molecular and cellular biochemistry, 283 (1–2), 23–30. Springer. doi:10.1007/s11010-006-2217-6 Gross, M., Henry, W., Michael, C. & Wen, Z. (2013). Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresource technology, 150, 195–201. Elsevier. doi:10.1016/j.biortech.2013.10.016 Gross, M., Jarboe, D. & Wen, Z. (2015). Biofilm-based algal cultivation systems. Applied microbiology and biotechnology, 99 (14), 5781–5789. Springer. doi:10.1007/s00253-015-6736-5 Grünewald, K., Hirschberg, J. & Hagen, C. (2001). Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. Journal of Biological Chemistry, 276 (8), 6023–6029. ASBMB. doi:10.1074/jbc.M006400200 Guerin, M., Huntley, M. E. & Olaizola, M. (2003). Haematococcus astaxanthin: applications for human health and nutrition. TRENDS in Biotechnology, 21 (5), 210–216. Elsevier. doi:doi.org/10.1016/S0167-7799(03)00078-7 Hagen, C., Siegmund, S. & Braune, W. (2002). Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. European Journal of Phycology, 37 (2), 217–226. Taylor & Francis. Han, D., Li, Y. & Hu, Q. (2013). Biology and commercial aspects of Haematococcus pluvialis. Handbook of microalgal culture: applied phycology and biotechnology, 2, 388–405. Wiley Online Library. doi:doi.org/10.1002/9781118567166.ch20 Han, D., Wang, J., Sommerfeld, M. & Hu, Q. (2012). Susceptibility and protective mechanisms of motile and non motile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. Journal of phycology, 48 (3), 693–705. Wiley Online Library. Hazen, T. E. (1899). The life history of Sphaerella lacustris (Haematococcus pluvialis). Memoirs of the Torrey Botanical Club, 6 (3), 211–246. JSTOR. Higuera-Ciapara, I., Felix-Valenzuela, L. & Goycoolea, F. (2006). Astaxanthin: a review of its chemistry and applications. Critical reviews in food science and nutrition, 46 (2), 185–196. Taylor & Francis. doi:10.1080/10408690590957188 Jeffrey, S. t & Humphrey, G. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und physiologie der pflanzen, 167 (2), 191–194. Elsevier. doi:10.1016/S0015-3796(17)30778-3 Jeon, Y.-C., Cho, C.-W. & Yun, Y.-S. (2006). Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme and microbial technology, 39 (3), 490–495. Elsevier. doi:10.1016/j.enzmictec.2005.12.021 Jin, E., Lee, C. G. & Polle, J. E. (2006). Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): biosynthesis, regulation, and biotechnology. Journal of microbiology and biotechnology, 16 (6), 821–831. Katsuda, T., Shimahara, K., Shiraishi, H., Yamagami, K., Ranjbar, R. & Katoh, S. (2006). Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. Journal of bioscience and bioengineering, 102 (5), 442–446. Elsevier. doi:10.1263/jbb.102.442 Kim, D.-K., Hong, S.-J., Bae, J.-H., Yim, N., Jin, E. & Lee, C.-G. (2011). Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnology and Bioprocess Engineering, 16 (4), 698. Springer. doi:10.1007/s12257-011-0081-z Kiperstok, A. C. (2016). Optimizing immobilized cultivation of Haematococcus pluvialis for astaxanthin production. Universitäts-und Stadtbibliothek Köln. Kiperstok, A. C., Sebestyén, P., Podola, B. & Melkonian, M. (2017). Biofilm cultivation of Haematococcus pluvialis enables a highly productive one-phase process for astaxanthin production using high light intensities. Algal Research, 21, 213–222. Elsevier. doi:doi.org/10.1016/j.algal.2016.10.025 Klochkova, T. A., Kwak, M. S., Han, J. W., Motomura, T., Nagasato, C. & Kim, G. H. (2013). Cold-tolerant strain of Haematococcus pluvialis (Haematococcaceae, Chlorophyta) from Blomstrandhalvøya (Svalbard). Algae, 28 (2), 185–192. The Korean Society of Phycology. doi:10.4490/algae.2013.28.2.185 Kobayashi, M., Kakizono, T. & Nagai, S. (1991). Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. Journal of Fermentation and Bioengineering, 71 (5), 335–339. Elsevier. doi:10.1016/0922-338X(91)90346-I Kobayashi, M., Kakizono, T., Nishio, N. & Nagai, S. (1992a). Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 74 (1), 61–63. Elsevier. doi:10.1016/0922-338X(92)90271-U Kobayashi, M., Kakizono, T., Yamaguchi, K., Nishio, N. & Nagai, S. (1992b). Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. Journal of fermentation and Bioengineering, 74 (1), 17–20. Elsevier. doi:10.1016/0922-338X(92)90261-R Kobayashi, M., Kurimura, Y., Kakizono, T., Nishio, N. & Tsuji, Y. (1997). Morphological changes in the life cycle of the green alga Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 84 (1), 94–97. Elsevier. doi:doi.org/10.1016/S0922-338X(97)82794-8 Koller, M., Muhr, A. & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal research, 6, 52–63. Elsevier. doi:doi.org/10.1016/j.algal.2014.09.002 Kühl, M. & Revsbech, N. P. (2001). Biogeochemical microsensors for boundary layer studies. The Benthic Boundary Layer: Transport Processes and Biogeochemistry (Boudreau BP, Jørgensen BB, eds.). Oxford University Press, Oxford, UK, 180–210. doi: Lassen, C., Ploug, H. & Jørgensen, B. B. (1992). A fibre-optic scalar irradiance microsensor: application for spectral light measurements in sediments. FEMS Microbiology Letters, 86 (3), 247–254. Blackwell Publishing Ltd Oxford, UK. doi:10.1016/0378-1097(92)90788-P Lewandowski, Z. (2000). Notes on biofilm porosity. Water Research, 34 (9), 2620–2624. Elsevier. doi:10.1016/S0043-1354(00)00186-X Li, J., Zhu, D., Niu, J., Shen, S. & Wang, G. (2011). An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances, 29 (6), 568–574. Elsevier. doi:10.1016/j.biotechadv.2011.04.001 Li, T., Piltz, B., Podola, B., Dron, A., de Beer, D. & Melkonian, M. (2016a). Microscale profiling of photosynthesis‐related variables in a highly productive biofilm photobioreactor. Biotechnology and bioengineering, 113 (5), 1046–1055. Wiley Online Library. doi:10.1002/bit.25867 Li, T., Podola, B., de Beer, D. & Melkonian, M. (2015). A method to determine photosynthetic activity from oxygen microsensor data in biofilms subjected to evaporation. Journal of microbiological methods, 117, 100–107. Elsevier. doi:10.1016/j.mimet.2015.07.022 Li, T., Podola, B. & Melkonian, M. (2016b). Investigating dynamic processes in a porous substrate biofilm photobioreactor—A modeling approach. Algal Research, 13, 30–40. Elsevier. doi:doi.org/10.1016/j.algal.2015.11.006 Li, T., Podola, B., Schultze, L. K. & Melkonian, M. (2019). Design scenario analysis for porous substrate photobioreactor assemblies. Journal of Applied Phycology, 31 (3), 1623–1636. Springer. doi:10.1007/s10811-018-1700-2 Li, T., Strous, M. & Melkonian, M. (2017). Biofilm-based photobioreactors: their design and improving productivity through efficient supply of dissolved inorganic carbon. FEMS microbiology letters, 364 (24), fnx218. Oxford University Press. doi:10.1093/femsle/fnx218 Li, X., Chopp, D. L., Russin, W. A., Brannon, P. T., Parsek, M. R. & Packman, A. I. (2016c). In situ biomineralization and particle deposition distinctively mediate biofilm susceptibility to chlorine. Applied and environmental microbiology, 82 (10), 2886–2892. Am Soc Microbiol. doi:10.1128/AEM.03954-15 Li, Y., Miao, F., Geng, Y., Lu, D., Zhang, C. & Zeng, M. (2012). Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically. Chinese Journal of Oceanology and Limnology, 30 (4), 627–637. Springer. doi:10.1007/s00343-012-1217-5 Lichtenthaler, H. K. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual review of plant biology, 50 (1), 47–65. Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA. doi:10.1146/annurev.arplant.50.1.47 Lichtenthaler, H. K., Schwender, J., Disch, A. & Rohmer, M. (1997). Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS letters, 400 (3), 271–274. Elsevier. doi:10.1016/s0014-5793(96)01404-4 Lorenz, R. T. & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in biotechnology, 18 (4), 160–167. Elsevier. doi:10.1016/S0167-7799(00)01433-5 Mayer, M., Nievelstein, V. & Beyer, P. (1992). Purification and characterization of a NADPH dependent oxidoreductase from chromoplasts of Narcissus pseudonarcissus: a redox-mediator possibly involved in carotene desaturation. Plant physiology and biochemistry (Paris), 30 (4), 389–398. Melkonian, M. & Podola, B. (2010). Method and device for cultivating eucaryotic microorganisms or blue algae, and biosensor with cultivated eucaryotic microorganisms or blue algae. Google Patents. Mesquita, J. & Santos, M. F. (1984). Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales). II. Mitosis and cytokinesis. Cytologia, 49 (1), 229–241. Japan Mendel Society, International Society of Cytology. Milledge, J. J. (2011). Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Bio/Technology, 10 (1), 31–41. Springer. doi:10.1007/s11157-010-9214-7 Mostafa, N., Omar, H., Tan, S. G. & Napis, S. (2011). Studies on the genetic variation of the green unicellular alga Haematococcus pluvialis (Chlorophyceae) obtained from different geographical locations using ISSR and RAPD molecular marker. Molecules, 16 (3), 2599–2608. Molecular Diversity Preservation International. doi:10.3390/molecules16032599 Mulbry, W. W. & Wilkie, A. C. (2001). Growth of benthic freshwater algae on dairy manures. Journal of Applied Phycology, 13 (4), 301–306. Springer. doi:10.1023/A:1017545116317 Naumann, T., Çebi, Z., Podola, B. & Melkonian, M. (2013). Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. Journal of applied phycology, 25 (5), 1413–1420. Springer. doi:10.1007/s10811-012-9962-6 Nguyen, K. D. (2013). Astaxanthin: A comparative case of synthetic vs. natural production. Norris, S. R., Barrette, T. R. & DellaPenna, D. (1995). Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. The Plant Cell, 7 (12), 2139–2149. Am Soc Plant Biol. doi:doi.org/10.1105/tpc.7.12.2139 Nowack, E. C., Podola, B. & Melkonian, M. (2005). The 96-well twin-layer system: a novel approach in the cultivation of microalgae. Protist, 156 (2), 239–251. Elsevier. doi:10.1016/j.protis.2005.04.003 Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12 (3–5), 499–506. Springer. doi:10.1023/A:1008159127672 Olaizola, M. (2003). Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular engineering, 20 (4–6), 459–466. Elsevier. doi:10.1016/S1389-0344(03)00076-5 Olaizola, M. & Huntley, M. E. (2003). Recent advances in commercial production of astaxanthin from microalgae. Biomaterials and bioprocessing, 9, 143–164. Science Publishers Boca Raton, FL. Olivieri, G., Salatino, P. & Marzocchella, A. (2014). Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. Journal of Chemical Technology & Biotechnology, 89 (2), 178–195. Wiley Online Library. doi:10.1002/jctb.4218 Ozkan, A., Kinney, K., Katz, L. & Berberoglu, H. (2012). Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresource technology, 114, 542–548. Elsevier. doi:10.1016/j.biortech.2012.03.055 Park, J. S., Chyun, J. H., Kim, Y. K., Line, L. L. & Chew, B. P. (2010). Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutrition & metabolism, 7 (1), 18. Springer. doi:10.1186/1743-7075-7-18 Pérez-López, P., González-García, S., Jeffryes, C., Agathos, S. N., McHugh, E., Walsh, D. et al. (2014). Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. Journal of cleaner production, 64, 332–344. Elsevier. doi:doi.org/10.1016/j.jclepro.2013.07.011 Podola, B., Li, T. & Melkonian, M. (2017). Porous substrate bioreactors: a paradigm shift in microalgal biotechnology? Trends in biotechnology, 35 (2), 121–132. Elsevier. doi:10.1016/j.tibtech.2016.06.004 Pringault, O. & Garcia-Pichel, F. (2000). Monitoring of oxygenic and anoxygenic photosynthesis in a unicyanobacterial biofilm, grown in benthic gradient chamber. FEMS microbiology ecology, 33 (3), 251–258. Blackwell Publishing Ltd Oxford, UK. doi:10.1111/j.1574-6941.2000.tb00747.x Qiu, B. & Li, Y. (2006). Photosynthetic acclimation and photoprotective mechanism of Haematococcus pluvialis (Chlorophyceae) during the accumulation of secondary carotenoids at elevated irradiation. Phycologia, 45 (2), 117–126. Taylor & Francis. doi:10.2216/04-99.1 Rao, A. R., Sindhuja, H., Dharmesh, S. M., Sankar, K. U., Sarada, R. & Ravishankar, G. A. (2013). Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. Journal of agricultural and food chemistry, 61 (16), 3842–3851. ACS Publications. doi:10.1021/jf304609j Revsbech, N. P. (1989). An oxygen microsensor with a guard cathode. Limnology and Oceanography, 34 (2), 474–478. Wiley Online Library. doi:doi.org/10.4319/lo.1989.34.2.0474 Revsbech, N. P. & Jorgensen, B. B. (1983). Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method. Limnology and Oceanography, 28 (4), 749–756. Wiley Online Library. doi:10.4319/lo.1983.28.4.0749 Richmond, A. (2008). Handbook of microalgal culture: biotechnology and applied phycology. John Wiley & Sons. Schlichting, H. & Gersten, K. (2016). Boundary-layer theory. Springer. Schnurr, P. J. & Allen, D. G. (2015). Factors affecting algae biofilm growth and lipid production: A review. Renewable and Sustainable Energy Reviews, 52, 418–429. Elsevier. doi:doi.org/10.1016/j.rser.2015.07.090 Schnurr, P. J., Espie, G. S. & Allen, D. G. (2013). Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresource technology, 136, 337–344. Elsevier. doi:10.1016/j.biortech.2013.03.036 Schultze, L. K., Simon, M.-V., Li, T., Langenbach, D., Podola, B. & Melkonian, M. (2015). High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor. Algal research, 8, 37–44. Elsevier. doi:doi.org/10.1016/j.algal.2015.01.007 Schwender, J., Gemünden, C. & Lichtenthaler, H. K. (2001). Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta, 212 (3), 416–423. Springer. doi:10.1007/s004250000409 Scibilia, L., Girolomoni, L., Berteotti, S., Alboresi, A. & Ballottari, M. (2015). Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal research, 12, 170–181. Elsevier. doi:10.1016/j.algal.2015.08.024 Seifert, B., Brockmann, M., Engel, J. & Gasser, T. (1994). Fast algorithms for nonparametric curve estimation. Journal of Computational and Graphical Statistics, 3 (2), 192–213. Taylor & Francis Group. doi:10.2307/1390668 Seifert, B. & Gasser, T. (1996a). Finite-sample variance of local polynomials: analysis and solutions. Journal of the American Statistical Association, 91 (433), 267–275. Taylor & Francis Group. doi:10.2307/2291404 Seifert, B. & Gasser, T. (1996b). Variance properties of local polynomials and ensuing modifications. Statistical Theory and Computational Aspects of Smoothing (S. 50–79). Springer. Seifert, B. & Gasser, T. (1998). Ridging methods in local polynomial regression. Computing science and statistics, 467–476. Citeseer. Seifert, B. & Gasser, T. (2014). Local polynomial smoothing. Wiley StatsRef: Statistics Reference Online. Wiley Online Library. doi:10.1002/0471667196.ess0672.pub2 Shao, Y., Gu, W., Jiang, L. & Zhu, Y. (2019). Study on the Visualization of pigment in Haematococcus pluvialis by Raman spectroscopy technique. Scientific reports, 9 (1), 1–9. Nature Publishing Group. doi:10.1038/s41598-019-47208-2 Shi, J. (2009). Removal of nitrogen and phosphorus from municipal wastewater using microalgae immobilized on twin-layer system. Universität zu Köln. Shi, J., Podola, B. & Melkonian, M. (2007). Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. Journal of Applied Phycology, 19 (5), 417–423. doi:10.1007/s10811-006-9148-1 Shoaf, W. T. & Lium, B. W. (1976). Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnology and Oceanography, 21 (6), 926–928. Wiley Online Library. doi:10.4319/lo.1976.21.6.0926 Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of bioscience and bioengineering, 101 (2), 87–96. Elsevier. doi:10.1263/jbb.101.87 Spreitzer, R. J. & Salvucci, M. E. (2002). Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annual review of plant biology, 53. doi:10.1146/annurev.arplant.53.100301.135233 Stanier, R., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological reviews, 35 (2), 171. American Society for Microbiology (ASM). Steinbrenner, J. & Linden, H. (2001). Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant physiology, 125 (2), 810–817. Am Soc Plant Biol. doi:10.1104/pp.125.2.810 Steinbrenner, J. & Linden, H. (2003). Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant molecular biology, 52 (2), 343–356. Springer. doi:10.1023/A:1023948929665 Tanaka, T., Makita, H., Ohnishi, M., Mori, H., Satoh, K. & Hara, A. (1995). Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Research, 55 (18), 4059–4064. AACR. Thyagarajan, T. (2015). Fermentation of omega-3 and carotenoid producing marine microorganisms. Deakin Univeristy. Torres-Carvajal, L. K., González-Delgado, Á. D., Barajas-Solano, A. F., Suarez-Gelvez, J. H. & Urbina-Suarez, N. A. (2017). Astaxanthin production from Haematococcus pluvialis: Effects of light wavelength and salinity. Contemporary Engineering Sciences, 10 (35), 1739–1746. doi:10.12988/ces.2017.711196 Tran, H.-D., Do, T.-T., Le, T.-L., Nguyen, M.-L. T., Pham, C.-H. & Melkonian, M. (2019). Cultivation of Haematococcus pluvialis for astaxanthin production on angled bench-scale and large-scale biofilm-based photobioreactors. Vietnam Journal of Science, Technology and Engineering, 61 (3), 61–70. doi:10.31276/VJSTE.61(3).61-70 Triki, A., Maillard, P. & Gudin, C. (1997). Gametogenesis in Haematococcus pluvialis Flotow (Volvocales, Chlorophyta). Phycologia, 36 (3), 190–194. Taylor & Francis. doi:10.2216/i0031-8884-36-3-190.1 Vogel, S. (1994). Life in Moving Fluids, 2nd edit. Princeton: Princeton University Press. Wan, M., Hou, D., Li, Y., Fan, J., Huang, J., Liang, S. et al. (2014). The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresource technology, 163, 26–32. Elsevier. doi:10.1016/j.biortech.2014.04.017 Widmer, E., Zell, R., Broger, E. A., Crameri, Y., Wagner, H. P., Dinkel, J. et al. (1981). Technische Verfahren zur Synthese von Carotinoiden und verwandten Verbindungen aus 6‐Oxo‐isophoron. II. Ein neues Konzept für die Synthese von (3RS, 3′ RS)‐Astaxanthin. Helvetica Chimica Acta, 64 (7), 2436–2446. Wiley Online Library. doi:10.1002/hlca.19810640751 Yin, S., Wang, J., Chen, L. & Liu, T. (2015). The water footprint of biofilm cultivation of Haematococcus pluvialis is greatly decreased by using sealed narrow chambers combined with slow aeration rate. Biotechnology letters, 37 (9), 1819–1827. Springer. doi:10.1007/s10529-015-1864-7 Yoshihisa, Y., Andoh, T., Matsunaga, K., Rehman, M. U., Maoka, T. & Shimizu, T. (2016). Efficacy of astaxanthin for the treatment of atopic dermatitis in a murine model. PLoS One, 11 (3), e0152288. Public Library of Science San Francisco, CA USA. doi:10.1371/journal.pone.0152288 Zhang, B. Y., Geng, Y. H., Li, Z. K., Hu, H. J. & Li, Y. G. (2009). Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture, 295 (3–4), 275–281. Elsevier. doi:10.1016/j.aquaculture.2009.06.043 Zhang, C., Liu, J. & Zhang, L. (2017). Cell cycles and proliferation patterns in Haematococcus pluvialis. Chinese Journal of Oceanology and Limnology, 35 (5), 1205–1211. Springer. doi:10.1007/s00343-017-6103-8 Zhang, F., Xiang, W., Xiao, B. & Chen, P. (2012). CO2 sequestration coupled with industrial cultivation of microalgae. Wei sheng wu xue bao= Acta microbiologica Sinica, 52 (11), 1378–1384. Zhang, T. C. & Bishop, P. L. (1994). Density, porosity, and pore structure of biofilms. Water Research, 28 (11), 2267–2277. Elsevier. doi:doi.org/10.1016/0043-1354(94)90042-6 Zhang, W., Wang, J., Wang, J. & Liu, T. (2014). Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresource technology, 158, 329–335. Elsevier. doi:10.1016/j.biortech.2014.02.044
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/30243


Downloads per month over past year


Actions (login required)

View Item View Item