Agrawal, Poojan, Hurley, Jarrod, Stevenson, Simon ORCID: 0000-0002-6100-537X, Szecsi, Dorottya and Flynn, Chris ORCID: 0000-0003-1110-0712 (2020). The fates of massive stars: exploring uncertainties in stellar evolution with METISSE. Mon. Not. Roy. Astron. Soc., 497 (4). S. 4549 - 4565. OXFORD: OXFORD UNIV PRESS. ISSN 1365-2966

Full text not available from this repository.

Abstract

In the era of advanced electromagnetic and gravitational wave detectors, it has become increasingly important to effectively combine and study the impact of stellar evolution on binaries and dynamical systems of stars. Systematic studies dedicated to exploring uncertain parameters in stellar evolution are required to account for the recent observations of the stellar populations. We present a new approach to the commonly used SINGLE-STAR EVOLUTION (SSE) fitting formulae, one that is more adaptable: METHOD OF INTERPOLATION FOR SINGLE STAR EVOLUTION (METISSE). It makes use of interpolation between sets of pre-computed stellar tracks to approximate evolution parameters for a population of stars. We have used METISSE with detailed stellar tracks computed by the MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA), the BONN EVOLUTIONARY CODE (BEC), and the Cambridge STARS code. METISSE better reproduces stellar tracks computed using the STARS code compared to SSE, and is on average three times faster. Using stellar tracks computed with MESA and BEC, we apply METISSE to explore the differences in the remnant masses, the maximum radial expansion, and the main-sequence lifetime of massive stars. We find that different physical ingredients used in the evolution of stars, such as the treatment of radiation-dominated envelopes, can impact their evolutionary outcome. For stars in the mass range 9-100M(circle dot), the predictions of remnant masses can vary by up to 20M(circle dot), while the maximum radial expansion achieved by a star can differ by an order of magnitude between different stellar models.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Agrawal, PoojanUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hurley, JarrodUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Stevenson, SimonUNSPECIFIEDorcid.org/0000-0002-6100-537XUNSPECIFIED
Szecsi, DorottyaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Flynn, ChrisUNSPECIFIEDorcid.org/0000-0003-1110-0712UNSPECIFIED
URN: urn:nbn:de:hbz:38-316138
DOI: 10.1093/mnras/staa2264
Journal or Publication Title: Mon. Not. Roy. Astron. Soc.
Volume: 497
Number: 4
Page Range: S. 4549 - 4565
Date: 2020
Publisher: OXFORD UNIV PRESS
Place of Publication: OXFORD
ISSN: 1365-2966
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
N-BODY SIMULATIONS; LARGE-MAGELLANIC-CLOUD; PRESUPERNOVA EVOLUTION; MODELS; PROGENITORS; PARAMETERS; SUPERNOVAE; BINARIES; CLUSTERS; RATESMultiple languages
Astronomy & AstrophysicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/31613

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item