Klesov, O. I. and Steinebach, J. G. (2020). On preserving the limit points of corresponding objects. J. Math. Anal. Appl., 486 (2). SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE. ISSN 1096-0813

Full text not available from this repository.

Abstract

Suppose that, for two given sequences {a(n)} and {b(n)}, lim inf(n ->infinity) b(n)/a(n) = 1 and let a function f be given. What can then be said about the limit behavior of the corresponding ratio f(b(n))/f(a(n)) as n -> infinity ? In general, no definite answer can be given to this question. We study a case where a definite answer is possible, namely the case of a regularly varying function f of nonzero order. (C) 2020 Elsevier Inc. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Klesov, O. I.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Steinebach, J. G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-330007
DOI: 10.1016/j.jmaa.2020.123916
Journal or Publication Title: J. Math. Anal. Appl.
Volume: 486
Number: 2
Date: 2020
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Place of Publication: SAN DIEGO
ISSN: 1096-0813
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
PRECISE LARGE DEVIATIONS; DIFFERENTIAL-EQUATIONS; INTERMEDIATE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; TAUBERIAN-THEOREMS; RANDOM-VARIABLES; PRV PROPERTY; FRAMEWORK; SUMSMultiple languages
Mathematics, Applied; MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/33000

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item