Giessubel, R., Heald, G., Beck, R. and Arshakian, T. G. (2013). Polarized synchrotron radiation from the Andromeda galaxy M 31 and background sources at 350 MHz. Astron. Astrophys., 559. LES ULIS CEDEX A: EDP SCIENCES S A. ISSN 1432-0746

Full text not available from this repository.

Abstract

Context. Low-frequency radio continuum observations are best suited to search for radio halos of inclined galaxies. Polarization measurements at low frequencies allow the detection of small Faraday rotation measures caused by regular magnetic fields in galaxies and in the foreground of the Milky Way. Aims. The detection of low-frequency polarized emission from a spiral galaxy such as M 31 allows us to assess the degree of Faraday depolarization, which can be compared with models of the magnetized interstellar medium. Methods. The nearby spiral galaxy M 31 was observed in two overlapping pointings with the Westerbork Synthesis Radio Telescope (WSRT), resulting in about 4' resolution in total intensity and linearly polarized emission. The frequency range 310-376 MHz was covered by 1024 channels, which allowed the application of rotation measure (RM) synthesis on the polarization data. We derived a data cube in Faraday depth and compared two symmetric ranges of negative and positive Faraday depths. This new method avoids the range of high instrumental polarization and allows the detection of very low degrees of polarization. Results. For the first time, diffuse polarized emission from a nearby galaxy is detected below 1 GHz. The degree of polarization is only 0.21 +/- 0.05%, consistent with the extrapolation of internal depolarization from data at higher radio frequencies. A catalogue of 33 polarized sources and their Faraday rotation in the M 31 field is presented. Their average depolarization is DP(90, 20) = 0.14 +/- 0.02, which is seven times more strongly depolarized than at 1.4 GHz. We argue that this strong depolarization originates within the sources, for instance in their radio lobes, or in intervening galaxies on the line of sight. On the other hand, the Faraday rotation of the sources is mostly produced in the foreground of the Milky Way and varies significantly across the similar to 9 square degrees of the M 31 field. Conclusions. As expected, polarized emission from M 31 and extragalactic background sources is much weaker at low frequencies than in the GHz range. Future observations with LOFAR, with high sensitivity and high angular resolution to reduce depolarization, may reveal diffuse polarization from the outer disks and halos of galaxies.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Giessubel, R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Heald, G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Beck, R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Arshakian, T. G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-472248
DOI: 10.1051/0004-6361/201321765
Journal or Publication Title: Astron. Astrophys.
Volume: 559
Date: 2013
Publisher: EDP SCIENCES S A
Place of Publication: LES ULIS CEDEX A
ISSN: 1432-0746
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
FARADAY-ROTATION MEASURES; MAGNETIC-FIELD; RADIO-SOURCES; M31; DEPOLARIZATION; PERSPECTIVES; EMISSION; IMAGE; ARRAY; CMMultiple languages
Astronomy & AstrophysicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/47224

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item