Verma, Anjneya, Panayanthatta, Namanu, Ichangi, Arun ORCID: 0000-0003-0256-7417, Fischer, Thomas, Montes, Laurent, Bano, Edwige and Mathur, Sanjay (2021). Interdependence of piezoelectric coefficient and film thickness in LiTaO3 cantilevers. J. Am. Ceram. Soc., 104 (5). S. 1966 - 1978. HOBOKEN: WILEY. ISSN 1551-2916

Full text not available from this repository.

Abstract

Electromechanical energy demands on homogenous thick films of piezoceramics with sufficiently large piezoelectric constant and reproducible performance. Single-phase LiTaO3 films deposited by sol-gel processing have been fabricated as cantilevers to investigate the interdependence of dielectric and piezoelectric properties as a function of film thickness. Phase pure LiTaO3 films with varying thickness in the range of 2.07-4.37 mu m on stainless steel substrates were obtained after calcination of samples at 650 degrees C. The relative permittivity of optimized spin-coated films peaked at 479.73 (1 kHz), whereas the piezoelectric coefficient (d(33) mode) determined by piezoresponse force microscopy was in the range of 21-24 pm/V. The effect of poling was studied through the butterfly and phase curves. A figure of merit (FOM) up to 3.29 (10(-18) m(2)/V-2) was determined for cantilever devices, which were able to generate a peak-to-peak voltage of 0.046-0.15 V using a 1 M omega resistor as an impedance load at a fixed acceleration of 1.5 m/s(2). While the power density was in the range of similar to 4-20 x 10(-9) W/m(3), which increased with the increasing film thickness. The leakage current density decreased in the range of 4 x 10(-5)-6 x 10(-7) A/m(2) in the same direction. As both ferroelectric and piezoelectric properties of LiTaO3 films are dependent on film thickness, an optimal energy conversion efficiency was obtained for a thickness of similar to 3 mu m. Furthermore, these devices were tested up to a temperature of 150 degrees C for voltage generation. Given the need for lead-free piezoelectric materials for environmental applications, these LiTaO3 cantilevers are very promising for vibrational energy harvester (VEH) applications especially due to their cost effectiveness, small size, stability at higher temperatures, and repeatable properties, which makes them suitable for MEMS devices for industrial applications.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Verma, AnjneyaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Panayanthatta, NamanuUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ichangi, ArunUNSPECIFIEDorcid.org/0000-0003-0256-7417UNSPECIFIED
Fischer, ThomasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Montes, LaurentUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Bano, EdwigeUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mathur, SanjayUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-585697
DOI: 10.1111/jace.17606
Journal or Publication Title: J. Am. Ceram. Soc.
Volume: 104
Number: 5
Page Range: S. 1966 - 1978
Date: 2021
Publisher: WILEY
Place of Publication: HOBOKEN
ISSN: 1551-2916
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
Materials Science, CeramicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/58569

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item